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AP PL ICAT iON OF PATTERN RECO GNI TI O N T [CHNIOUES TO DETECT ION OF SEVERE STORM

F EJ\T U~LS IMOM MU [ONO LOG I CAL SAl LLL Ii L DAI1\

0. Introduct ion

The av~i i labi l i ty of h igh—resolut ion sa te l l i te  imagery from SMS/GOES offers

a unique oppo rtunity to moni tor seve re weather phenomena on the mesosca le .  The

obj ectives of this report are to summar i ze features of var i ous categor i es of

severe storms an d examine the applicability of pattern recognition techniques

to the iden tifi cat i on and p re di ct i on of severe storms from visible and infra-

red satel li te i ma gery .

Pattern recognit ion models for severe weather phenomena differ from classi-

cal , statistical pattern recognition models in terms of feature values , sta ges

of decision logi c , branching lo g ic , and feedback capability . Feature values

are often discrete (representing the presence or absence of one or more events

assoc i ate d s~1th severe weather) rather than continuous. The decision log ic

p roceeds th rough var ious sta ges , often backing up or modifying previous deci-

sions , unt il a final classification (such as number of inches of rainfall or

cyclone intensity ) is made.

The degree of automation which can be introduced into these pattern recog-

n ition systems can vary from total automation to a completely manual approach.

The cost of dcve1op~’ent and/or applic at ion of automatic pattern techniques

must be considered on an individual basis for each type of feature to be ex-

tracte d. In generii l , those features w h i c h  must be obtained by automatically

tracking a sequence of cloud objects are more expensive than those which can

be c.bt~ined from a sin gle ima ge.

This investig ation began with a literature survey , a quest ionnaire , on-

site vis its to NIiSI\ and NESS and interviews with meteorologists expert in van-

ous aspects o F severe storm identi fication and Prediction . Section 1 rev i ews
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



the pattern reco unit ion mo~ relevant to severe storm identi f icat ion and pre-

diction. Secti c i n 2 summarizes for various categories of severe weather those

fe~ t~ res ~Jiich characterize each category . The digit ized data necessary to

ext ract  eacti  feature is cons idered .

For a cu~plete1y autom atic syste m for severe wea ther pattern recognit ion

models , a lgorith ms for (1) cloud c lass i f i ca t ion , (2) cloud segmenta t ion , (3)

cloud ceometry , and (4)  cloud tracking need to be developed. A rev iew of al-

gori thms in these four different areas and suggestions for future algorithmic

develop~ent are presented in Section 3.

The conc luding sect ion outl ines our recommendations on the feasibi l i ty

and priori ty of development of some pattern recognition techniques for iden-

ti f icat ion of severe weath e r features .
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1 . Pattern Recognit ion Models

One can consider a number of different parad igms for pattern recognition.

A descr i pt ion (If thn major mude ls serving to direct research on mach ine pat-

terns ap~ ea rs in Kana l [1974 ]. The two main approac hes are termed (a)  the

Feature Ex t rac t ion - C l a s s i f i c a t i o n  model , and (b) the l inguist ic or syntact ic

model

Feature Cx l rac t i o n  C lass i f i ca t i on  Model

In the feature extraction classification model , recognition is achieved

by mak i ng measure men ts on the patterns to be reco gnized , and then derivin g

features from these measurements. These features form the input to a c lassi -

f i c at ion  procedure that gives a c lass , group or category assignment for each

pattern. The avai lab le information from the pattern environmen t i s thereby

reduce d , in stages , ultimately to a small number of categories .

A co!~mIonly used version of the fe a ture-extraction c lass i f icat ion mo del

is one in which the features are treated as components of a vector X =

(xi ,x2,.. .,x 0 ). Each pattern is considered to be a ooint in the result ing

n-dimensional feature space.  C lass i f i ca t ion  is then treated as a problem of

div id ing this n-di mens iona l space into exc lus ive reg ions R~ , j = l,2 . . . k ,

such that .:hen a fe ature vector  fa l l s  into R~ the pattern is assigned to

c lass  j . This d iv is ion night he ef fected on the bas is  of s t a t i s t i c a l  or non —

s ta t i s t i c a l  considerat ions . Note that any type of feature may be used in

this model .

In the s i m ples t  case where there is no variability within pattern classes ,

class i  fi cation reduces to tempi ate m atchi no in which an observed pattern is

matched against  a prototype ( te m p la te) .  When the ~‘ar iabi 11 ty i s l imited , it

may be possible to extend this idea to the fe ature sp ace and c las s i f y  patterns

3
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according to their d is tance I rum the nearest prototype. in most problems one

needs to employ mo i- e sophis t ic ated methods of mult ivar iate stat ist ical  clas-

s i f i ca t ion  for defining the regions R~ .

The L i n s ~is t ic _ Sy t . e t i c  Mode l

The co : ::aan ly used version of the feature-ext ract ion c lass i f i ca t i on  model

has been ct- i tici zed for focusing primarily on s tot is t i  ca l re lat ionships among

the features wh i le  ignoring other “structural”  properties that seem to char-

ac ter ize  pa t te rns .  A lso the classification into a region R~ of n—dimensional

space lead s only to a c lass designat ion of a pattern rather than a desc r ipt ion

wh i ch nr~ .’~ des some insight concerning the c lass , or which a l lows one to gen-

crate patterns belonging to a class .

Various approaches are being taken to overcome the above perceived fa i l -

ines of the feature-extract ion c lass i f i ca t ion  model . In the l inguist ic model

for pattern descript ion , patterns are view ed as sentences in a language de-

fined by a forma l grammar . A “primitive extractor ” transform s the input data

into a str ing of sym hols or some general relat ional structu re. The pr imi t ive

ex t rac to r  may i tsel f be a feature extractor c lass if i e r .  Then a structural

p:tte rn analyzer  uses a for mal g ramma r to parse  the str i n g an d thus constructs

a descr i o t io n ol t h r  pattern.

The str ess on he distinction between the fea ture-ex t rac t ion  classi fi-

cat ion mode l and the l ingu is t ic—s yntact ic  model misses the obvious points

that , eve n in t he syntact ic !lOdCl , the prini t ives are features that have to

be ex t rac t e d  f ’ oi:i measurements , and that assoc ia t ing  a pattern wi th a genera -

t i ve  model is essent ia lly equivalent to cl assi fying the pattern into ca tegories

represe nted hy the po ne rat iv e mode ls.  Clear ly ,  the gene rative mode ls need

not b~ rest r ic ted t~ fomoa l grammars. One cou ld include such famil iar models

4
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as a d i f ferent ia l  equation model , a function a l equation model , or a stochas-

tic model such as a finite state Markov chain model .

Structural __Pattern_ Recogn i t i on

When a formal model is not exp l ic i t ly  present , the terms “ad-hoc ” or

“h eu ri s t i c ” are used. The phrase “structura l pattern recognition ” refers

to all pattern recognition approaches based on defining primit ives and iden-

tifying allowable structures in terms of relations hips among primitives , and

su bs t ruc tu res tha t combine pr imi t ives.  The relations mi ght be boolean expres-

s ions  or m i g h t  be s p e c i f i a b l e  by som e s ta t i st i cal r e l a t i o n s h i ps or by a gen-

erat i ve gremma r model . The term structural pattern recogni tion represents

less a s pec i f i c se t of p roce d u res than  an a t t i tu de , i.e., that pattern recog—

nition al gori thms should be based on the mechanisms that generate and deform

patterns .

Hierarchical Class ifi ers

Hie rarch i cal class if iers or dec i s i on trees h ove been use d extensivel y

in many application areas of multiclass pattern recognition. A hierarchy

o f class if ie rs provi d es a f lex i ble way to i nco rporate different fea ture su b-

sets , sta ti st i cal , l i n gu i s t i c , or a d -hoc re la t i onshi ps , an d de c i s i o n  pol i cies

at the various nodes of the tree.

All the problems of fea ture selection and classifier desi gn are accentu-

a ted in the multi class multi m odal case. and the usual single stage multivariate

linea r or nonl inear discriminant function approach often fares more poorly

than ant ic ipated .

The apparent theoretical increase in discr iminat in g abi 1 i ty of si ngle

stage nonlinear discrimi nant functions is usuall y not rea lizable in pract ice

because of problems involved in est imating the f i re  struct ure , represented

5.
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by the hig her-or der relationships among the features , due to dimensiona lity

an d sample size considerations [See Kanal 1974].

In an M class problem , for a given sam ple size per class , dimensiona lity—

sam ple size considerations may dictate that no more than n features be used .

It is likely that the best set of n features to disc riruinante between one

group of c lasses is quite different from the best n features for another set

of classes . Limiting consideration to some n features to be used in a single

step to make an M—way decision may lead to a forced compromise in the choice

of the fea ture set. Spli tting the decision into several stages might be

better. Then at each stage of the decision process , the n features best

suited for that classification task could be used. This permi ts the mult i—

class class ification problem to be decomposed into a series of less comp lex

dec ision problems . The optimal and heuristic design of decision trees wh i ch

use both physica l model—based features and data derived features is the sub-

ject of current reseqrch by Dr. Laveen Kanal and his students at the Labora-

tory for Pattern Analysis of the University of Maryland [e.g. Ku l karni 1976 ,

Kulkarn i and Kanal 1976].

In practice , the op t ima l  techni ques for des i g n i n g dec i s i on trees are no t

feas i ble ,an d the various suboptimal techniques for tree design are best viewed

as s ubr out i nes to he uti l i ze d i n a recu rs i ve , in teractive approach to the

des ig n of hie ra rchi cal c lass i f i ers . Reasons for tak i ng an automa ted , i nter-

act i ve , gra phics-ori ented approach to pattern anal ys i s and the des i gn of

class ification systems were summari zed in Kanal [1972], which also descr ibed

a number of representative interactive pattern analysis and classification

systems (IPACS ) then implemented or under development.

MIrACS , the Maryland Jnteractivc Pattern Analysis and Classification

System which is p art iall y implemented , was des i gne d to facil i ta te the i nter-

6
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act ive design of s ingle stage and hierarchical c lass i f iers [Stock man and

Kulka rni (1976), Kanal (1977)]. MI PACS has been found very useful by f lu .

Jo Ann Par ikh in interactiv ely designin g and te~ t l og d ec i s i o n  trees for

her dissertat ion on cloud c ld ss if i c a t ion  and seq m ntat ion [Parikh (1977a ,

1977b )].

We note here that (in unpubli shed ws rr ) Sco r ie~ ~ 
k os devel oped a dec ision

tree for thunderstorms to aid human dec i s ion t m k i n ~ ( See rig .!), and D.

Tarpley of NESS has developed a decision tree fir recog n i t ion of low clouds.

For severe storm identification and recogni t ion , it is cIedr that the

classifica tion model which will have to he rel i ed upon ~c the hie rar chical

classi fier or decision tree with stat istical ~nd other  structura l fea tures

and relationsh ips being used at the various nodes . The design and test-

ing of the classifiers for some of the severe storm features w ill hav e to

be experimented wi thin an interactive manner , before defini ng an opera-

t iona l  p roce dure to be recommended for use in any aut c~atic cc ser~i - a u t r n a ~ ic

system .

Some of t he genera l  pro b lems of pattern recognition , which affec t the

development of pattern recognition schemes for a vaHety of application areas ,

wet-c lis te d in Kana l [1975]. Some of those proble m s impinge upon the develop-

ment of auto mat ic and semi—autom a t ic  systems for severe storm feature ext rac-

tion and c lass i f i ca t ion .  Addit ion a l problems ar i se in the severe sto rm

area from the fact that some of the important features which are used or

may be potentially uscd to identify severe storm activity are not defined in

a sta tic manner. Rather many features are defined by the na ture of their

evolut ion in titl e , with the time involved rangin g from a ft-action of an hour

to days . Procedures for the autom atic extraction of such time dependent

2
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fea tures , ma ny of wh i ch are de scr ib ed i n subsequent sections , are essentially

lacking in  the p u b l i s h e d  l i ter ature on di g i t a l  p icture processing [Rosenfeld

and Kak (1976)]. It does seen’ feasible to develop automatic procedu res for

some of the more important time dependent features , and these are taken up

in Sec tion 3J’ an d i n th e recom mendat ions . Many of the ava ilable procedures

for curve d e t e c t i o n , line detection , description of pattern geometry , and

pattern scqme ntat lon , sonic of which are discussed in Section 3, need to be

examined in a ces po rative study for the ir relevance to severe storm feature

detection. The sta~ e of the art of image pattern recognition is unfortunately

not so adv a nced tha L one can dec id e wi thout ex perimenta t ion on rea l data

wh ich procedure is best for a given application.

I’ ~ 8
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2. c! tion of Severe Weather Features

A com pilation of severe weather features by severe storm category was

prepared from info rmation obta ined from a review of the literature , consul-

tations with satell ite meteorolo gists , and responses from a questionna ire .

The format of the questionna ire is presented in the appendix. The responses

received are reflected in the text of this report.

Four categories of severe stor ms were of major interest to the satel l ite

meteorologists:

1) Severe windstorm

2) Heavy ra instorm

3 ) Hailstorm

4 ) Tornado

Two other categories of severe storms--bl izzards and electrical storms

( l ightn ing )—-w i l l  not be considered in  this study. Bl izzards tend to be

characterize d by larger scale features than the mesoscale features which

have been used to identify and/or predict severe w indstor ms , etc. Further

research is needed before def in i t ive correlat ions between specif ic satel l i te

features and the occurence of severe e lect r ica l storms can be made. Many

of the features which are relevant to t he severe storm cate gor ies above

w i l l  probabl y pt -eve to be of importance in the case of e lect r ica l  storms .

A list of severe weather features result ing from merging the responses

to the questionnaire on this topic is given in Table 1. An attempt was made

to place the most important features for each storm category near the top

of the l i s t .

Most of the frat ul-es can be detected from observat ions of a sequence of

infrared or enhanced infrared images. Included among these features are

9

:~ 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ . ,  ~~~~~~~.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- ~~~~~-- - -

spl it ting cel ls , merging cells , speed—of—cell movement , vertical growth

rate of cel ls , c hange i n to p hei ghts and life cycles of overshootin g tops .

Win d fieYc which can he autom atically extracted from visible or infrared Se-

nuences by cloud trackin g algorith m’; can be used to determine low-level  vor—

Li city , patterns of ipper — l evol diver gence combi ned with low—level conver-

gence , whether a storm is deviating to the right or left of the mean wind ,

and upper—level  jets in the vic inity of storms . Specific cloud types or

con figurations associated with these features also can be used to identify

their presence in a single imane. Mesohigh boundary interactions , pendant-

shaped ce l ls , low -level  cumulus cloud l ine feeder bands , the texture of a

cell , and the locat ion of the steepest  temperature gradient are severe weather

features which can be observed in a single image. Overshooting tops are , in

ge neral , too sma ll to be observed in the infra red images where the resolu-

tion is na utic al mi les  (n .m.) hut can be detected in the v is ib le  images

where th e res~ lution is 1/ 2 n. 5. or 1 n.m.

A brief desc r in t i or i of cacn of the features in Table 1 is included in

this section . Algorithms to extract each feature are considered

in Section 3. Section 3 provides insight into the na-

ture of the s’rob leas which must be solved if a completel y automatic system

1 n ~~‘ ~~i ’ d~o.e1 opcd .

2. 1 . N r n o h  i ~h Po’.: oP ry In  t er ac ti on

The in tersect ion or merger of the outer boundary of a mesoscale high

press ure sys~ om with another convective boundary (such as a front , s quall

line , or another moso high) was shown by Purdom [74,76a] to almost always re—

sult in en incre ase in convective activity . Rain , a dec reas e in tempera-

ture , a pressure surge , gust fronts, and tornado activity may occur at
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these points of convective intersection. There are two basic cloud pat-

terns described by Gurka [76] which are associat ed with mesohighs. In the

first case , the ou ter bound ary of the me sohig h appears “as an oval shaped

le adin g edge to the thunderstor m with the anvil cirrus curving anticyc loni—

(a l l y  ou t  of the rear of the (thunderstorm) c l u s t e r ” . In the second case ,

thy outer boundar y appears as “an arc shaped lin e of convective clouds ad—

\ ‘anc iua eutcard from a d iss i patinci thunderstorm area ” . The parent cumu loni m—

has cel l  may ex hibit a “comma ” ta i l .

The com ma-shaped c loud pattern , which i s assoc i ated with areas of upper

troro~~horic. vo-tic ity , i s often indicat ive of severe weather. Mathews and

$nhnston ~i 6]  reported the occurrence of tornado act iv i ty , gust storms i n

excess of 5C~ knots , and ha i l in  the area of a compoct , w el l —organized comma

clo ud s,’ste:n . They attr ibuted the severity of the thunderstorm outbreak to the

re la f ie r . s h i n bet -eon wel l -def ined comma cloud systems and concentrations of

r-asi t~ ye vort i  ci t~! advect ion (strong upward vei-ti cal motion) . Parmenter [76]

descr ibed a rein/ ann -,’,’ producing sub—sy noptic system in which the cloudiness

associate d th a surface ~-iave had a di stir;ct co . ‘a s~ane ‘‘i th colder tops

al o’-n t .e ‘oi the: ’n side.

i~ 0 5 - P — n- to determine or di f fere nt ia te-  areas o P severe weather along

the nes o ii iqh bound ary , Gurka [76] recommended in the case of gust fronts use

of enh anc ed infrared and vis i ble imagery to locate features such as tempera—

turc’ c-f the coidost tops in the thunderstor m cluster behind the mesohigh

U’--iH ary , t he prese n ce of overshoot i ng tops , c loud  edg e gra d i en t s , ~nd speed

of notio n oc the arc hounding the niesohi g h. The role of in tersecting arc

l ines (nosohi c ~h boundary interactions) w as a lso emphasized.

— S
1,,’
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2.2. Low—Level Cum ulus Clou d m y  reed ’r Panda

Low —lev el cumulus cloud l ine feeder bands refer tu the mesosc a le l ines

of sma ll cumulus clouds which cav e or feed into a thund erstorm ~yc tem , mna i n-

ta m ing and re - pie - ni  shing the moisture of th e  thunderstorm syste m . These

cloud l ines represent areas of low —level  nu istu re  conver gence. When these

convect ive lines intersect or merge into anot her convec t i ve  boundary or l ine ,

enhanced thunderstorm ac t iv i ty  almost a lw ays r e - c u l t s .  A n example of this

type of rn&rger appeared in Purdom [74].  The locat ion of new thu nde~ storms

along the clou d li ne of an old nesohioh boun d~ir’,’ ~.‘as si i c ’ .-in to co incide ~‘iith

the point where low — level cumulus l ines merged - into it from the south.

The recognit ion of convect ive lines in satellite in gery p lays a maj or

role in the predict ion of thunderstorm ac t i v i t y . Ol iver  and Purdeci [7~ ]

stated that “almost a ll new large convect ive a c t i v i t ’ ,’ i n the t ropics forms on

• a pr- c -exist ing line ” . They di ffer ,en~ iat’H Va ‘~ no’ - t’,-’rcc of line patterns

in sa te l l i te  imagery inc luding synoptic f ronta l  Hods . agua l l  li on s , rope-

like c loads , and niesoscale lines of s- ne l l  cumu lu s clouds. Conv ectiv e lines

repres em ’ti nc areas of low—level moi s tore con ’.’e rc -cc c  ‘-ay be terrain re-i atud.

However , Purdom [74] note d : “Rega rdless of the generation m ech ani sm for a

convect ive boundary or line , when it mer cies ‘i th and m l  ercects another con-

vect ive  boundary or line , more intense convect ive ac t i v i t y  almost a l ’ s.’ciys re--

suits. ”

2.3. Steepost Temn erature_Gra d i en t

The locat ion of a gust front along the leading edqe of a c uc uloni ru bus

system and the are-a of most significant preci pitation in a convective syst.:-

‘

S can be dete rmined by ana lys is  of the temperature gradients w i th in  the thun—

derstor ~a syste ms . Gurk a [7€’ ] note d that “ the gust front is usua lly located

13
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very close to the strongest temperature gradient in the- infrared pictures ,

near the leading edge of the cu mim ulon imbus ” . Ol iver and Scofield [76] ob-

se rved that the area of most s ign i f icant  precipi tat ion (which may consist

of only one— tenth or less of the entire anvi l  area)  in a convec t ive  system

octurred in the upwind portion of the system . The upwin d port i on of the con-

vect ive system can be- determined in a sing le enhanced infrared ima ge from the

sha pe of the i nd i vi du al anv i ls and th e l o c a t i o n  of t he stee pest tem pera ture

gradient. Anv il cirrus has a distinct sharp edge on the upwind side and a

fuzzy edge downwind. The plumes often extend downwind several degrees.

• The location of the largest  temperature gradients in images formed by sum-

— ming digita l values for enhanced infrared images over a 6—hour period can

also be used to determine the upwind portion of the convect ive system . A

hi gh degree of correlation (correlation factor of 0.88) was obtained by Oliver

an d Sco fie l d ~~C] bet’-.’een observed 6-hour precipitation and cumulative dig i-

tal infrared values in the tipi-iind portion of the c o n v e c t i v e  system.

Enhanced infrared imagery is used to “be tter dis p la y low clouds , to

better identif y the structure of convect ive stor ms and to locate sea-surface

t empera tu re  g r a d i e n t s ” (Ande rson[74]) . Enhanced infrared images are ob-

tam ed by transfor mi ng the o r a y—sc a le -  of infrared images by appl icat ion of

Specific enh a ncement curves. Disp lay devices for infrared imagery are , in

general , l imited from 16 gray shade -s (or less for facsimi le recorders) to 64

gray shades. If infrared ima gery is not enhanced , temperature increments are

equal for each shade of gray in the display . In order to enhance the data ,

the range of possible temperature values is p artitioned into temperature in-

te rva l s or segments and for each seg ment a ii ne-ar mapping from the tempera-

ture valu es wi thin the segment to a specific gray scale range is sped fi ed.

14
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If no enhancem ent is desired for the segment , the linear function consists

of a straight line with slope factor 1. The enhancement curve may assign

gray shades out of sequence instead of varying gray shades from black to

white as the temoe rature decreases. This type of enh ancement (al ternat ing

li ght and dark shades) is particularly effective for identif ying the struc-

tore- of convective storms . The enhanced infrared pictures used by Gurka [74]

were produced by assi gnin g gray shade values to temperature interva ls as

spec i f ied below :

+30 °C to -44°C —— linear assignment from black to near white
-45° C to -57°C —— dark gray
-58°C to — 13 °C -— light gray
colder than .- — 63°C —— black

The fo l l ow ing enhancemen t procedure was used by Ol iver and Scof ield [76] for

summer c o n v e c t i o n  in the- middle latitudes :

+17 ° to -2 °C —— dark gray
-3° to -23°C -- 1iqh~ qray-24°C to —43 6 C —- white
-44°C to -H°C —— dark gray
— 59°C to — 63°C — —  l ight gray
—64°C to — IC° C —— blackest
below -68°C —— wh i test

A comparison of three enhancement curves for GOE S -i infrared imagery ava i l -

able i n the Washington Sa te l l i te  T i e l d  Serv ices Station on February 1976 can

he found in Clark ~1].

The locat ion of the steepest temperature gradient in enhanced infrared

image ry is determined by observing a narrowin g of the width or distance be-

tween aray shade contours . According to Scof ie ld [76] , “There arc s ituations

when the upwind portion (area of tight IR temper ature gradient) and active

thund erstor m clusters are- difficult to f ind bec a use:  ( 1) the- ti ght IR temp-

erature gradients cannot be di c”-orn od , or (2) the colder enhanced IR contours

over s~~- r i d a large area. ‘ There is cle arly a need to incorp orate - pattern r e-
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cognition t’’chniques for anal ysis of i r f r .nr  - d grad i - ’ i~ S i~~~
’
~ Sy Y ’ ’ -l I 0 T

producin g enhanc ed in frared imnaqe ry . The need tc de-v .- lop ~~~~ 
‘ n ri-cogni-

tion techn iques th at en ’~ance and i W - n t i f y  the ‘ o r  ~,-ce t - ma r l gradi ’ Ii ’S ~I~15

discusse d j  t~i 1 ~er et al. [ 7 5 ]  nud ’ r ’ the he,~dinq of “Se ’. r ’ r r ’  bt r ’ rm o.tra ti al

A~-ma l ys i s ” . The y recon. ’cend ed use of the rmal q rad i rn t a -pc t~ -or i r it 1~~’/ i h emi —

onena such as the - motion of arc clouds and to deline a t e “the relative hot

and cold ‘ tongues ’ that seem to be necessary condit ions for cer~ain kinds

of sever e weather c~’nerat ion ” .

2. a . ~~p H e i n h t s

“The hinhest and coldest clouds form where the thunderstorms are most vig—

orous ” (Oliver ~ Scof ie ld [76]). Near the convective cells with the coldest tops

the strongest wi nds , the heavies t ra in , an d the most sever e- thunderstorm

— act ivi tv occur. An outbreak of severe weather in the y id’ -,’ost which pro-

duce d ~ t~raecfoes , l-~ occurrences  of gus ts i n excess of SO kno ts , wind damage ,

and hail up to soif boll size was found by t?ethe~’;s and Johnston ~76] to be

assoc ia ted ‘ -mi t h a com m-a cloud pattern in which cloud tops up to 46 ,OCO f t .

were indicated by radar.

The he i~ ht of cloud tops can be obtained fr om the cloud-top temperatures

and a \‘c- r ti cal tcc’perature prof i ft of the area of interest. Procedures to

deter:ci en cloud-to p temperatures frei i sa te l l i t e  rad i  anne measurements ge-n-

era l ly  ma ke twe basic assu m ptions: (1) clouds are opaque and hence their

emi s n iv~ ties are equal to unity , and (2) a constant correct ion factor may be

ap pl ied or e a t er va por contr ibut ions above the cloud . Liou [75 ] noted

that hot.h a - ‘ -c c t  ions snem ~justi ¶ i ed for cumul oni mbus clouds which are fairly

Ii i g h in I ha a t-os p h rm - n h’jt added that “it seems unlikely that a cloud whose

ra ’ iss iv i t - .- c ’ sua ls uni f , may be isolated from sate l l i te  observ at ions ”, and

16
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that “unless a rel iable radiative transfer calculat ion can be carried out ,

the uncer tainties of the emissi vity of thick clouds or multilayered clouds

m a y  lea d to serious errors in the evaluation of cloud-top tempe ratures .” If

the f ield of v iew of the s atel l i te sensor i s not comp le tel y fi lled by clouds

which are - suf f ic ient l y dense to shie ld the sate l l i te  sensor from radiation

below the c loud , the r ad i ance  at the sate l l i te  wi l l  represent the sum of

radiance from the cloud and radiance from surfaces beneath the c loud. If

other types of clouds are also in the field of view , for example , l ayer—type

c louds such as cirrostratus and al tostratus , the assum p tion of an em i ssivi ty

of 1.0 may not be valid. Discussions of relationships between cloud-top

tempera tures , bri ghtness , and heights can be found in Mos her [76] , Shenk

and Curran [ 73], Park et al. [74] , Gruber [75] , Liou [75] , and Young [75] .

The cloud hei ght prog ram of Mosher [76] determines the height of wind tracer

clouds by using visible brightness , solar zenith angle , satel l ite zenith

angle , relat ive azimuth angle , cloud type ( ice or water clouds ) , etc. ,  to

calculate clou d emissivity as a function of the optical thickness of a cloud .

Fu rther investigation is needed to determine whether or not within a thunder-

storm sys tem areas of col des t sa te l l it e ra di ance measurements  can be equated

w ith areas of coldest cloud tops (i.e., if the assum p tion of cloud emissiv i ty

equal to unity suf f ices)  or if more compl icated algorithms , such as the c loud

he ight algorithm of Mosher [76]. nee d to be implemented.

2. 5 .  Vert ical Growth Rate of ~r’ll

The vertical growth rate- of a cell is determined from enhanced infrared

imagery by observing the- change of satel l i te  radiance measurement wi th time .

Assumin g that the changes in radiance measurements p arallel changes in tern-

pcratu re and that temperature de cr ea se - s w i th  height , then the expansion of a

17
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gray shade contour representin u the coldest radia nce ar easuro inr ils denotes

a ver tical qrn -.-.th of the cell. The rute of gror-:th is represe nted by the

cha nge - in ar- mi of this contour over the time nor iod of i ri te - rest .  This d ianne

will H a function of t he pa r t i cu l a r ’  e nhanun re n t  c u r v e  used to  pr~’ - hr cn t h c

enha nced in: r - .1~ V -

Th e amount of exp a nsi o n ( mnua ~ ur’ nd in ter ms of degr o~- of latitude) of

cloud t -  ‘~ in t i e u;’ -i ind o r t i o n  of a c o nv e c t i v e  syste m ‘ - ‘as one of the fac-

tors in S c o f i e - l d ’ s dec isi on tr’c~ roced ure (Fig. 1) which contributed towdrd an

increase in the a n n o o t  of  convc ’ct .i’.’n ral nfal I . La m er amounts o~ preci p i—

tation rena as soci  a t~-d ci th col do r ~np-s a m i d i- . I th rani nily ox ’andi no tops.

Li nds ~f 51) hunts no r-n repn rtecf in the area of a cloud nattem n tv; ~cai of

air  sass th ur i ’m- s terno when the uarent c uc ’ uloni ob us cel l  ;-ao s rae id ly  ore ’ -.’-

i re and e ro d ic i ng  io wa ,’ ra infa l l  (Gurka L7-~1).

2. 6.  Ov’n -sh nrt  i a n  T c , is

Ove rshe ct i  n~ tops refer to thunders to c - ’  tops w hich “shoot over ” or

above t ie ’ ar -a u port ion of the t hunde rstor m” . The u nper 1 i : :~ t of t hunderstor~
nrc - , t h  is do tn r : ’ i ned by the- hei g ht of the s t r a tos p here. The t ro pnp-a use ,

the b an e of t h e  s t a a tn as eher ’ n , is defined a s “t he level at - - h ich tomeera ture

b e g i n s  to i ’n: r a ’ use w it h heinht  or at le a - st de ar -ca se s ot a rate ha lo 1 .1°F.

pc- c 1001) ft. (ha m t o  ~6i ] ) .  Pe’n the c loud a ir c oves ie to  the stratosn’here , 
—

it w i l l  f e  -;ubj cctn ’ d to a du’-;c,- .’ ord force since :- -
.
~~ asc ’ndinn air is colder

and hence - - w a -n de ns e than the sur -rou ndi ng a i r .  T he no raf t  speeds in the

I i- . :nder~ tur’ : , hc” - ;e - ,’er , cay he so hi nh th a t  the u p - a - an d n- n” m nt u -’, n. i ll pronel

tH cloud a ir S e V r - r J i  th o unan . ) feet a ba. ’ ’  the tn ’; one’ s” until the do-i - -u rd

~r rc’- b i l  n - s  it to a ha l t .
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Overshoot ing tops can be recognized from both visible and infrared

imagery . The presence of overshooting tops in infra red imagery can be as-

certai ned by determi nq if the cloud-top tem peratu re is  h ig her than the

tempera tu re  of the  tro pos pa use a t  the  g i v e n  loca l ion. M i l l e r  et a l  [75]

suggested that o v e rs h out i mm q t o p s  nay be “del ineated by simple - qradi m t  or

cu r-va to re enh ance men t techniques ” . A second indicat ion of overshoot ing

top s is t he a pp ear ance of arm uneven or lumpy texture wi th in  the- thunderstorm

s’~o t e : . individual overshooting tops are usua l l y  too small to be seen in

infrared imagery (4—mile resolution). If v is ib le  imagery ( 1/2— or 1—

mile resolut ion) is available , overshooting tops can be detected by the- shad-

ow they cast upon the anv il.

Overshootin g tops are associated wi th the most hazardous parts of thun-

derstom nas . If a cloud is capa ble of producing large hailstones , it must

have very strong updrafts . These updrafts would furnish the upward mo mnen—

turn to produce cvers ,booting tops . According to Battan [61 ] , if a ha i ls tone

is to reach a diame ter of 3 inches , it must take several tr ios to the top

of -a tal l  thurderstor m and down again. Since a 3- inch  h ai ls tone has a f a l l

speed ef about 61)1)0 feet per minute , vert ical  motions of this magnitude must

exist c’ith in the c l oud .  f-Thou analyzing cloud patterns associated w ith strong

wi mid 7000S , Gurka ~4 ] sta ted that “on v isible - imanery , the- strongest cells

can some t im e s he loca ted by over shoo ti ng to ps above the anvi l . ” Scof ie ld ’ s

dec is ion tree- procedure (F ig . l)  for half hourly est imation of convect ive rain-

fa l l  i r m c reo s es the half hourly est imated amount of preci pi tat ion by 0.50

inch if overshooting tops (located on visible imagery ) occurred in the up-

wi sd portuon of a thunderstorm system . For an exam ple of visible imagery

show I rig a line of oversho e-ti rig tops in a thunders torm cluster , see Scofi old
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2.7. Br ic ht 1e x t L m r ed

Tim ur ider stor: cloud s which pm-educe the he .mvi es t prec ip itation or e r r

bright ~nd teytu red in t i e  vi~ ih1e imag ery . hr i rht , ‘,icc ;nt h cloud’ ; ,~re of-

ten renmes ” i i  tiv e of midd le and hi gh cloud deb r is n/u thoct p rec ip i t at ion

( S.c i - f ie ld  [!hj ) . )) rtaer c loud s am md t r a ns luc n- ’ i L c loud s a lso are not q o r o ra l l y

ir ~d ica - t i a ’.- of hea ’ .’y a mo unt ’ - of f o i l i ng  prec ipi t~tion. In addi tion to a

br igh t— lec tured  appe arance , features which can be extracted from vi cib l e

ima ger y for ch;’ract.eri ca ti on of heavy rain storm s include overshooting tops ,

mccc i no I humi dcr - s ‘ onus (also can be observed in enhance d infrared ) , an d low—

l ev e l c occ i  us c lo u d — l  inc feeder  bands .

2.8. ~J~fl~rJ$.-.’~I:
l Y r  P

A jet stream’ is defined by the W orld Meteorologic a l  Organizat ion ( f- :’ - ;O )

as ‘ a st ra inr no rm ’,- .’ current , concentrated along a quas i—hor i zon ta l  ax i s  in

the upper tropos a-here or in the stratosphere , c ha racter ized L ay st renc ver t i —

cal and lateral -.‘.‘inU shears and feot uri  rag one or m ore veloc i ty  maxinma ” .

There - are two main westerly jet streams at upper troposphere ic-aol: (1

the sub tro p ical jet stream which is found between 30,000 and 40,000 feet

above sea level between 30” an d 35° latitude and (2) the circu rrpolar or polar

jet strew’ locat ed somewhat l ower i n  the atmosphere and further away f rom

the equat er t han the subtropical jet stream. According to the defini tion

adopted by the World Me teorological Oroanization: “Normal l y a jet stream is

thousands of kilometers in lenqth , hun d re d s of k i l ome ters i n wi d th and some

kilometers in depth . The vertical shear of wind is of the- order of S to 10

imips (1 meter per second 2 knots) per kilometer , and the lateral shea r is of

the order of 5 t im ’s per 100 km. An arbitrary l o;-,’er limit of 30 mps is as—

signed to the ~pevd of tbe “rind along the axis of a jet stream ” . A jet
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axis is the axis of strongest wi rids within a jet streanm . Jet max ima (velo-

ci ty  max im a )  are centers of high w ind peed ol ’’ mig the let stre;m ’ s . Winds

may reach mo ore - than 250 i.nots ai win  a jcr ‘- t ‘ n - i - :  ax I s

Location of a jet axis can I’ d~ fe - i - i n n’ - - ’ raw ’ ‘.of -11 to deriv ed upper—

level wind data or Iron ( ‘ x a m j m i ’ f  ~‘ri if  cloud pam - m m : ’ . i m -  th ’’ v ic in i ty of

the jet stream. Auvine and Si k ), mn 7.~1 nb’ .r r- . - -1 f 0 . : t  “ t ime ~rt ax is c lose ly

fol lo w s the zero vo r ti~ it i 1 i n  m i t t  a ’ i c ,- - ic , r a ft iii - . to t’ i~ s n u f i m - a i st

and cyclon~c to the nt -mth - ,- ,- - - t ” , wh ic h  ‘ma’~ i n  r e -  m ‘,- i i f i  f b i ’  f i ’ - e r e t i c a l

ex pectation for a we nt e r i .’ j°t c ’ -  . - “
. ‘ ‘ed ” ‘e -a o m i ni L m d i cO ’ s [73]

Wind Editinu and An a ly s is  Prenra -’ r~ -r~ ’i a- com a ’ - ‘ ana l -i ’- is of the d i v e rg-

ence and re la t ive  vor t i c i ty  f ie lds . ‘The m a i n  . b ‘-ct ‘ - . ‘ cloud features are

lon g sha dow l i nes , large cirrus shields w it h sha me ’ ii’ unda ri es , long cirrus

bands , ci ri-us s t reaks , and t r a n sv i -m a- i  bands n. i t  t in  cirrus cloud formations ”

(Anderson [74]). In order to locate on v i s i b le  imagery the imol ar jet (which

breeds blizzards and stormy weather over the United States), one shoul d look

for the sharp pole -ward edge of a large , sl ightly anticyc lonica lly—curved

cirrus shield. The shadow cast by the high jet-stream cirrus clouds on

lower clouds or surface features usual ly extends far front the edge of the

cloud . “ Pole -w ard from im the jet streams the clou d s present a ‘lumpy ’ appear-

ance, while on the equatorward side the clouds look much more even ” (Ander-

son [74j). Relat ionships between synoptic features (such as jet streams )

an d re p resentat i ve cloud patterns , althou gh generall y val id , do not alwa y s

apply in each specific instance. For example -, Doswell and Scha-effer [76] re-

porte d a find i ng on May 4, 1975 , in which thr’ position of cirriforn i bands and

streaks was well sou th of the jet core which was “at vari ance with the 1 itera—

ture on satellite interp cetation . ”
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Middle and upper- level  jets are often associated with outbreaks of

severe weather. Anderson [ 74] pointed out that “an important factor in

forecasting severe weather is the presence of a m ech anis m that produ ces uppe r—

level di ve rgence ,” and “in most cases this is a jet stream.” Torna do

ou tbreaks have occui’rod ne-ai r the intersection of a l c- ;-I — l ( ve l a-nd or-hem-

level jet (Mi lien’ [ 71] ) and near the intersection of a dry line and a ,jc-t

stream (Mi l ler  [ 76]). Accnrdin e to Anderson [74], “tornadne s occurr in g in

the presence of the subtropi cal jet streams are n ;or ;-;olly beneath i ts inter-

sect ion n,’ith the squall line and to the north of the jet axis. ” Scofield

~5] trace -cf a hoa ’.’y soc - astor ia to an unper air disturbance in the v ic in i t y

of a 300-nh jet axis. Auvine and Sib dar [73] located the je t  core to the

west  of stoma; regi on -s ‘- -h i ch nrc’duced severe n-mother including tornadoes and

located the j~ t ax i s to the nor thwest of the orec i c i tation area. In the

cases  they stu died , the v found simi lar f luctuat ions between cirrus tracer

nation s neat’ tbe jet s t r e a m  and nearby severe storm intensity which sugees ted

“so:;ae sort of direct interactions of the severe storm evolutions with the

jet -stre a m : f lo - ,-.’ f ie ld. ”

2.9. Pend armt -Sho n-a d Cells

Pe n d e o t - s h a : c d  c e l l s  or ‘ carro t” cel ls refer to th understor m ce l ls  which

develo p in a s tn -aug , vertical she -am ’ envi ronmen t. These thunderstor m cells ,

which are shaped by the ~‘cor of wind n- i th hei ght , are stretched out hon zon—

tally so t h a t  the elongated axis of the anvi is i’aral lel to the vertical

w ind shear be t a - n c- na the lowe r and upper troposphere. The ver t ica l  wind shear

vector is p arallel to the mid-tropospheric i sotherms . Pendant-shaped ccl ls

often occur in close proxim ity to jet streams ; typ ically, i n the v i c i n i t y of

a low —level  so ut heuf y je t and a hi gh—level n-.’ 1’s terly jet. The wind shift

from south - - s t  to south t;o south - -a ect with hei ght produc es the charac ter is t i c
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pendant shape of the ce lls.

An derson [74] point ed out that “veer ing of winds with height is an mi -

portant par a m e ter i n foreca sti ng severe weather .” NOAA— l infrared imagery ,

depictin g pend ant-shaped cells in an area in which tornadoes occurred be-

nea th the intersection of l ow— and ’m id-lev el jets , can be found in Figure 5-

E-3 of Anderson [74]. Al though pendant-shaped cells are generally associated

with thunderstorms , the-it’ significance in determining the severi ty of a

thunders torm is questionable. Further statistical analysis is needed to

evaluate the impo rtance of including pendant —shaped cel ls as a feature in

severe storm pattern recognition models.

2.10. Ri 9ht_ (or Left) Deviating Storms

R ight (or left) deviating storms are thunderstorm cells wh i ch move to

the ri gh t (or left) of the mean troposp heric wind . R ig ht movin g (right

deviat ing ) storms often occur after a thunderstorm cell spl i ts into two sep-

arate sections , with one section (left deviating) moving to the left of the

mean wind and one section (right deviating) to the right. The right

deviat ing, cyclonica l ly rotating cel l is associated with severe thunderstorms.

“One of the characteristics of a convective system is for thunderstorm ge-n-

erati on to take place on the upw ind side and to propagate to the right of

the mean I noposp ime ri c W i nd’ (Sc of i  ci d [76 ] ) .

The move-ate-nt or deviation of a storm from the mean wind can be observed

from se- c lue- rices of enhanced infrared i nmaqery . The coldest temperatures of

the r i ght devi ating thunderstorm move to the right of the mean motion. The

mean wind or wind direction can be de -term ained by tracking appropriate cloud

targets for wind veloci ty est i mat ion. If the chan ge i n wind direct ion with

hei ght is minimal , the wind direction will be parallel to and can be esti—
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mated from the a. ri e n ta ti o r m of the cirrus blowoff (cirrus plumes). However ,

this proc educe should ra n t be used in an envi r om ame nt of strong vertical wind

shear.

In am , a nal y’ i ’ s o~ an mm o u t b r e a k  of sever e n -.’ecither over the midweste rn

United S t e t r ’ - , on hey 5 , 1h7l , Tmn dn’rn ,on [74] pointed out that “the threat

tr a c i~s of tb ’. t o r e  nI- -’ - ‘mo d a c in g stori:’s ire all oriented at a far greater

ang le to tb -a m’i~~bt of the b - - level  f b i  than those - of the non—tornado pro—

du c e mn . ” , .-.‘ - a i ch  “ i r a d i c r n t n ’s that t i e  torn ado —producin g thunders torms were all
-
, cv c l o n i c a l l y  r c t - .rt ing ,  r ight a ( v i a t i m a , :  severe  storms .” Burgess and Brown

~~~~~~~ 
in an an a l y s is of Doepler radar data from a right noving thunderstorm ,

observed that the ri nht ~ving cel l (referred to as the Davis storm ) pos—

sessed all of t ime ’ radar su percel l  charac ter is t ics .  “At least f ive short—

lived t o mn:~ dc’c- s occurred ’ in the Davis st orm at - ca.

2.11. L o w — L e v - .- l ‘.‘ ‘ r t . ic i  tv

Posit’i vc’ b -a — m eal vorticity and mid—level occ i t ive vor t ic i ty  advect ion

are ind i cat i ve of severe weather which produces tornadnes. \‘ortici ty is a

vector  q u a n t i t y  2 n- i ia i ch  measure - s rotation. ~~ ~~~ 
t7,~,, an d 2~ are the

co ;-apuoont .; of 2 and u,v , and w are the components of the ve oe i ty vecte r  V

w i th  n - ca - n - ac t  tn ~rxn ’ s x , y ,  a , which are f ixed in the eam ’th .. then the eel a ti ye

v o r t i c i t y  Y z is de f in ed as be - l u - a :

2 -~~~~ 
- --~~~~

P-x ~
y

The tn:- -m v o m f i c i t ’ ,- (or re la t ive  vor t ic i ty ) usual ly refers only to the- verti-

cal compo n e a t which measures spin in the hot’i zontal plane . A parcel of

- 
I air which rotates in the sa me sense as the Earth does in space is said to

have nc- n- itiv e , or cycion ic , vorticity . In order to comnoute vorticity “all
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that need be measured is the velocity of the air. If this could be done with

sufficient accuracy over a lar ge area , it would be possible immed iately to

construct charts showin g how the vortici ty of the wind is distributed ”

(Sutton [61]).

tow-level cumulus clouds which exh ibit cyc lonic shear and curvature are

indicat ive of positive l ow-level vort icity . Positive vorticity advection

“can be identi fied t-ihere there is a small area of enhanced convective activ—

-
, 

ity or, in certain cases , a formation in the shape of a comma” (Anderson [74]).

“Cellular cloud patterns aid in the identificat ion of.. regions of pos i t i ve

vorticity advection .” According to Clark [76] positive vorticity advectin q

over an area at mid-tro pospheri c levels can be “best defined on IR imagery

as m iddle-level alto clouds as opposed to higher , col der c i r r u s  clou ds .”

Positive low-level vorticity has been shown by Charba [76] to be corre-

late d with the outbreak of tornadoes. Parnienter [76] observed fro nim movie

loo ps of visible Sf’tS-2 imagery a b -level circulation with the cc-mrea pat-

tern assoc i ate d w i th ra i n/snow p ro duc i ng sub-s yno pt ic systems around a lar ge

Gul f of Alaska low . The compact and -,-.-ell -de fined nature of a vorticity com-

ma cloud system , observed by Mathews and Johnston [76] n-:as believed by the

authors to imply “a concentrat ion of pos i t ive vor t ic ity  advect ion (strong

upward ver t i ca l  mot ion) ,  an d thus [he]. . . m d i  cati ye of the severity of this

thunderstorm outbrea k . ” The importance of mid -tropospheric vo rt ic i ty  ad-

vection in in dicating waves on fronts which were associated with areas of

heavy preci pitation n-ias illustrated in an analysis of frontal cloud systems

by Parroenter and Anderson [74].
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2. 1 2.  Ut ’j a ’ r - L ’\ ’  - 1 D i v e r n e n  e and t ow — Lev el Conv ence

Conve rgence and divergence refer to the accumulat ion and depletion

(res pec t i ‘acly) of m ass in a volu a nre of f luid. Lu- a - level  hon zontal conver—

gence imp lies that air is crowded into a smaller horizontal area and , since

it cannot ar c an ; ’nlo t e there , is forced to move uja-.- ,’ards. As the air ascend s ,

it cools ad iaba t i c a lly and conde nses its water vapor into clouds , ra i n , and

son’.-.’ . Except in sniau i l—scal e disturbances such as tornadoes , the ra te of

chan ge of pressure at the surfac e is mea l 1 (“barometric tendency ”) wh ich

m s”an ,s tha t th~ tot al d~vern ooc e in a column of air must he s m all . There fore- ,

in omdc r to “b a lance a Linac convergence of air in the lower levels  of a

c y c l o n e , there m u s t  be a sl ightly greater diver gence a lof t ”  (Sutton [61]).

The me-a t Iae :’a~ ical ter ra “diverg e-mace ” includes both the meteorological con-

ccd ts of co n n ” e m g e nc e and di vc rc ’ence . If u ,v , and w are the co mponents of

the veloci t~ vector V in a coordinate system with ayes x ,y, an d z , then the

hot acut e 1 di verc en ice  of V is dofi ned as

div V + CV
H ‘x c~~

For pos i t ive d iv 1~ V . diver gence is said to occu r and for negat ive d iv 11 V . con-

ve rc e nce.

The prese m ac: c of conr ~-er aemice or divergence is, in p ractic e , of ten est i - —

m n— ated f ro m the confluence or diff lun ’nce of the streamlines. Areas  of con-

vergence ma y apuoa ’ in satellite imagery as very fine , closel y s paced cloud

bands (bo lro ,’d [71]). Interpretations of cellular cloud patterns may enable

— 

the me teoro lo g is t  to ident i f y diver gent f low in the cold air behind polar

fronts oven ’ oe e rnn  r; areas Yandernon [ 74]).

Auvi ne a n nd Si kda r [7
~~ 1 pointed nut that “divergence in the upper atmo-

sphere gives a general indication of the region of upward motion .” They con—
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cluded th at “fields of divergence and relativ e vorticity obtained from the

(wind) vectors exhib i t  a cons i stc ’ nt pattern t-ii th refcrenc e to the location

of the jet ax is and thund ers to n - ala prec iii ta ti ott ,mrea “ . They noti ced , hon-aeve r ,

that al thnugh the pr e ci n itation area was asso ciated wit h an area of diver-

gence , the location of maxi mum divergence did not coincide exactly with the

location of the seve re s tor an preci pit ation area . /\ n ;a~r:q the fed ture~ Ob-

served by Scof i e ld  ~‘ b }  when t r ac k i  nq an upp e r  ,ai t’ dis turbance wh ich produced

hea vy nni o — - ,-s t um-na5 ‘c- re posi c iv o  ~‘or ri ci t y amd v e’ tion and uppe r air  d iv e a  O n - m a c ’ ;.

Stor na ms are of~ e m n re ;nrt ed in n the a rea nf co , - ’ .- e r Ie ’ n ; c e  of land , ocean , a r e

sea breezes. A di n ,00ss inrm of a variety of f ac to r s  -,- .- h ich inf l uence the de-

vel opnment of the seam breeze can ac’ found in Purdorn [n]. Local ar c - ac of con--

verqcnce of the sea breeee lead to a str engtbenni n r a o~ the cumulus ac t i v i t y

: 
along the sc-a I-re -eo n rent with t hannd y rs to mn ’~ of ten fo ra-a i ng alon g toe mer ging

of con ’.m-etivc lines such as those resul tin e from two sea breeze fronts (for

example , see Pur d c - ra [7’i] and Scofi old and be ss [76]). The converoc-nce of

the dayt rae winds bi ewin g fr~ra the sea and the Gulf toa - ;a n’ d the Flor ida peni n—

sula ‘- ‘as one of the factors suciqes ted b y Edi ng er [67] which accounted for

Florid a ‘ sur.;r;er thu nderstor ms

?. 13. Speed-of-Ce] 1 M~v e;’en t

An i aa por t am mt feature for es t i amna t i  on of the severity of wi ndstor mns is

the spee d—o f —c e l l  movement. D isp l acements  can be meas ured from pairs of en-

hanced infra red images using syste ms such as the 151 ( Interpretat ion Systems

Incorporated , t-~oniel ~l5O ) available at NESS (National Environmental Satellite

Service) by locating tim e intersection of two cursors over the initial and

final positions of the ce ll. Displ en ce mn mont of arc clouds which represented

the leadi n ’a edge of a gust front n- is comnap ared by Gurka [76] with l ow—level

wind speed . The m e - sub ts of the anal ‘.‘si s n- eve - a bed that “rapidly mov inn arcs
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arc general b y a - a c a a i dted w i th  strong low —level  winds ” .

2.14. t-ler qin rm Cells

Invest i gat io n’ - ‘v Simpson and Wood ley [71] indicate that mnaerging cumu-

loni rnbus ce l ls  “of ten produce ‘so re tharm an order of nma cm nitude more rain than

isolat e -el  clouds on the same day, probably ow ing to dynam nic inv igorat ion of

the merged cloud c i rcu la t ions ” . The authors suggested that “merger and

organizat ion are probabl y the- f i rs t  necessary steps in the fo nnmation of

s q u a l l  lines , tropica l sto rm rainbands , an d the gi a n t  c u m u b o n imbus sys tems

tha t fuel the large-scale equatorial air motions ” . Procedures for i ncreas i ng

the est ima te of convect ive rainfal l  based on occurrence of merg ing thunder-

storm cel ls  ‘.-:e re incorporated into Scofield’ s model for convective ra i nfall

est imat ion (F ig . l) .  The merger of thunders torm cells can be clea rly seen in

sequences of enhanced infrared images. Merger can also be detec ted i n se-

quences of hi gh-resolut ion v is ib le  imagery .

2.15 . ~~~ittinq~~~~ls

Splitting cells and right (orleft)deviat ing stones are two severe storm

features - h i c h  usual l y occ u r toge ther . A cumulon i mbus cell i s s plit i nto

two souca -ate section s -‘hen one of its members is rotating. The cyclonical l .y

rotatina aaca :ah er cov e s to the ri ht ~niqht deviating storm ) and tends to be

tornadic. The right m noving . tornado producin g Davis storm studied by Burgess

and Brown [73] resulted from the splitting on April 19 , 1972, of an i so—

bated thunderstorm over b’estern Oklahoma . After the s p l i t , the left movin g

section travel ed 2P degrees to the left of the mean tropospheric wind while

the Davis storm (the riqht ’r,nv ing section) traveled 25 degrees to the right

of the mean wind. Figures 5-E-6 (i through 1) of Anderson [74] illust rate

the corr os pondermce ! ‘ c ’ t a - ,c nnn ~pl i tt inq ccl ls an d tornado threat areas in both

radar da ia  n m m d v i s i b le  satelli t e ~~~~ Splittin g cells can also be observed in

seqamn- nc es of en h - a rv - ’d int r ,n rad i mm n a c l r a - ,.
28
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3. A b q c r  t ianc  for 7 \ u t ’ m - l - a t i c  De~ ec t ion and T m , :ck inq of ~‘aav ere Sto rms Features

The abo orith ams presented in this section address toe four major proble m nm

ar eas br’ l ( ’ -,,

1) clou d classification

2) cloud segmentation

3) cloud geome try

4) clou d tracking

A rev iew of algorithms applicable to the above top ics and su gg es tio ns for f u t u r e

al gorithmic development are included in this section. Cloud c lass i f i ca t ion  is

the f i r s t  s tep  in identifi cation of severe storm features . In order to deter-

m ine wind fields , clouds must be classified into height categories. A descrip-

tion of clou d type is implicit in the nomenclature itself of some of the severe

Storm features. Lon’i-level cumulus cloud line feeder bands consist of clouds of

cumulus cloud type . Mer gi ng cel ls , s pli tting cel ls , etc., are features  of

cumuboninmbus clouds. Positi ve vorticity centers are best defined as middle --

level alto clouds (Clark ~76j). When us ing GOES imager y in severe weather fore-

casting, observing cloud types and their change m,iith time is used to infer

changes in thermodynamic insta bility (Purdom [76b]). If clou d classification

sy stems c lass if y on an area bas is instead of a point-by- point basis , cloud—

se q r- e n u tat  ion t e c hmm i ques mm nus t be applied to obtain an out] inc of cloud fe-a tures.

The cloud segmenta tion of an at-ca of satellite imagery can be partial (looking

only for  c loud fea tur es of~~ des ired cloud type and shape) or total. If the

cloud segmentation al gorithms result in outlining and labeling cloud objects

by cloud type only, sha pe properties (such as comma—tail , arc-shaped , line-

shaped) must be determined by alg orith mmm s designed to characterize the geometric al —

properties of the segmented cloud objects. To detect on- going chandjes in shape

and/or motion , cloud objects must be tracked from frame to fr ame .
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3. 1 . Clo ud Cl a r ,  j r~~ ion

A br ief  su”v ’-y of cloud cb a s s i f i c a t ; i on  st ud ies is f elbe - ,-~ed in Sections

3 .1.1.  a n~ 3.1 .2 . h- , a a - a -a n n .- oanr rc ’ Fa” n~ ivr d i e c u ’ - s ion  of major cloud c las s i-

fi c a ti on s e nd ins a r n - a  ‘ inch w i t i n  cacti  ¶; P c t i on in ch renel nq i cal orde r. ~‘te t bod s

to d ie , cm - i n ’ n in a te  c lo uds fn’ e:n d c ’ r a t e a s  a re n r e ” e n a l a - d  in ; Sect ion 3 .1 .1 .  The

deve lo le out e~ au t ’ ; :- a tic cloud—t ype cl-a ’, - ; i li c a ti c’r a syStems is reviewed in Sec-

tion 3 .1.2.

The pr ebbo: - of sti n qu i sh~nq clouds from ci c-er en rc - -s was encroache d either

ft-a: ’ the stc n dpei n~ ‘- 1 sal ecti en of ae p r oa ’ n i a te  thresholds or wei qht inq func-

Lions n f ] ~at~ [ ] , an am id a a I ~am [70] in an st iqa

me-th e -h :; fe-n -- s e i e c t f t n :  of a s ing le thre s hold  ft - n: ; v i s ib le  se asure rnents.  The se

met hn- ~:-- i : ac i  :;-*~d ‘ a l - - I  se lec t io n of t inr ’c-~ ho1ds fcc” sari es of threshold ed

ia - en - c s and/c:’ c’-m ee: ~ sr~’s of “ inc  p lo t s ~f rel ative r:. h ia rn ce vs. send e number

and aut- e tic s—abe ::t ic - n nf thresholds f rca - gr end i ent ia rcne s and hi stoq ra ’cs of

visi b le data , :it i ;ie a ~rid e r r-a .. She-nh and Samb orao na: ,en [71] exp lered the ef—

fec n ~ -.- a r - ,’i ng th e- n - amPle P o~ a r c - e l—cl oa id— si zc-—to— a rea l re- sol o ti on el e re c t

on es i ce t o s  cal a c t  - n a b  c lo ud c - n a -e r .  Tb-c e conci ended th a t the value of R must —

ha- a t  b c - c a ;  105 ii ci cud—cover  est a :a  t c - c -  obtained by s in g le—thresho ld  methods

be cam id. Pc- t in Shenh and Sa l er nonson [71] and Pi 11cr and Eed des [71]

- al  t i p i c -  i - hold - aeth e - d a ;  u S i a - I n - ;e i cb t i n -  fun-: t~ e” ’ s to  est i i a ’a t e per-

cerm tagc of clo ud cu - r i ’ .

- ‘oat  of t ie  c - l o an  c lass i f i  ca t ion studies were c o n d u c t e d  usinq cl oud— t y ec ’

i nfot - - - a  t i c  n eve n- oce an s.  O ’ e r  the oceans, the c lear cream is , in general

r- nd i a ia ~~2 nrc -ad is loss than nc-nt’ land a n-c l di ffe rc nce in radiance —

l eve ls  l - e ’ t - ,; - a - ’ n c c - c - am a end c lou d s is qre at nn’ than that  ‘ c t - -edo land and cle uds
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Threshold select ion techniques to det rn~ inc sea-surface tempera ture were

developed by Smith et ci . [70], Smmi ith and Rao [72], and Leese et al. [71]. In

tropical oc ani c areas , ci tiler the se am —surface tempera ture (or a l ine-ar func—

tion of the rea—su rfa co t m -: : a ; e n - a t a m r e )  could be used to d is c r iminate clouds from

background. The line ar function used by Koif I’m ’ et ci . [73] to separate clouds

from clear area - -n~is T - 5~’C , where T was the sea-surface temper ature for the

given grid area.

Cloud -type c l ass i f i ca t i on  systems using only visible data characterized —

cloud types by formmm , pattern , texture , and dim n en sions or layers of the patterns

and forms . The guides to interpretat io n of TI ROS sa te l l i t e  p ictures prepared

by Co nover [02] mot ivat ed several of the earl ier studies.  Rosenfeld [65] de— - ;

termined optima l windo:-; sizes for discr iminat ion of cloud patte rns into cate-

gories such as “broke nness ” , eb on g~a ti on , f i’hros i ty, and convexity . Lee -se [64 ]

used s t a t i s t i c a l  c - c - S h ed s  to de ter m ine synopt ic -sca le  features for c lass i f y ing

b a - -leve l cu: nl form ci c ud patten ’ns n-hich occur oven ’ the oceans by cloud amount ,

s i ze of tine c umul if or :a a cel ls , and size of the cloud bands. Cel l size was

found to hen n -e lated to the locat io n of the observat ion and the w ind veloci ty

field. C lo i d am ount n-icc related to the location of the observation wi th re-f-

e-re mo e to the ce n te r  01 the a n t i cyc lo ne , to t h e  latent heat transfer betw een

the cc - c - a nn s e r h a ce ’  a mi d Mic a t a ’ : o s n - h a n e , to the n-: i mid f ie lds  at the surf ace amid

at t ime $50 ad ’ level , and to the ai r-d en - - point  temperature di fference at the

Sur face. Sn;r~ ace n•:i and steed nc-ms also an in:por trn nt factor in disc r im ein ati ng

among grou ps- of cloud b: - n nda . he t e den - ic ed m ino t iom i- inv a r io nt  features based on

the au to cnn ,’c ’ lat ion f mm nc t ion to m e a s u r e  the d i rect ion and the degree of align-

‘cent of cl e n’ ! s t m - e - e t s- . Dar l inn and Jose p in [dfl] tested seven different pattern

re c oein ai tion techniq ues for disc r n’a n o t ion of m ;n n c u; ’n nl us clouds from cumulus
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cb ou r ! ’ - O’ ;’! sol id  cel l  cn n - s ub na; c louds C rc ’ ;  pol yqorn a l ccl I cumulus clouds.

The s c - r n -” : i ’~ ‘‘ :1 t i p le r r -n re ’ ; s i omm m ’ a ~hni5ue w i th  four or ~c’,- .- c - r d iscr iminat e - n-s

p e r l e  as ;i’1l o n i m ’ c m ’ c: n de n n t ‘: , aa r ; a lca s as o t h e r t c - c - h r ; i q ues  w h ich used 300 to

e ra ; - a ic - a . ~oo ’ H [721 u s - !  w i l t i p l o  d isc r~n-n n - a n t  an a n l y s i s  t e chn iques and

a -r e ep t t  a ’ ’ ;  t w a i n ;  m a - :  ; :e L-:n d s t a r  i so la t - ~i mc - i l e - l - ,- - - e -h , low—leve l c - loud r e q io na s .

in c a r d e r  t ’  e - : - - o l ; n ’ c a b  iqu i ti e - - - e-tonn ’n cloud c lam’s - e s, the anL’or re - co -- c a- e nded

t- .e a ’ ! - i t e a ’ a - C inf; -a ; ’ ed f ’ na ta r r - c ,  t- ~ t i - c  - a t n o - r a c  - ‘e-cto r.

t W a  the a- ,’ aHad - j i i t , ’ et m ’ n ’ ; b t i s a a c ’ ,t r n l  s a t e l l i t e  data . a uto : - - :e t ic sys te a - ; ’

t a n  d i s - c - m i n-- - a p i~ ’ of cc - ’:-d 5 / ;  e s  ( a s  c;apc ’s d Y. c loud ~nr: --s or shapes )  ‘ -ac re

de c- a l a - c - c d .  h~’ffl er et ci. [73 n m - n I ~~
‘-

~~~ ( P - t i c - c a l  “-:- t cor c l o p ica l  t e e t e r )  ten ’ -

a r - am La u-c- n to cl ass if , cl ren d s -a . Cm - c - aces a nd C h- an n i [70] deter-

i c -cd c lca ,~~t:;~ S i r ’ n ; a t nw s f n , d ’ :rie ”n sam ’ - :: ] c - s of P ’ -L’1S- 2 d c -ac!  da ta  over t e e -

c o n t t — e - a e t al ci te ’ i S ei r ns e 1 - d i i : ; t n u ’e - - - a s  n - ’ l c t i . o l - ,’ ;nifor:n cloud cover ~nid

I : n ’c :’id c e:,’ i rfl c” t e n f l - 3 : : ’ . Tin e ; - : ] n ~
_
~~, - !rf l~ n at  c l a s s~~ication method of

a a ‘ i  Ca amn s [70] :;eamc-e s~ fem be iete: at if ted all clou d t\pes except for cumu-

lus am: , i c - a - ‘ b c - i  ‘~ ; - ‘ he 1- n c ! :  ~af su cces s  or c e : : ; u l us - t - ,’ame clouds as attrib— a

uted to the nonhomo geneous nature of the cloud f ie ld . A combination of thres-

holds d c - -rii a ‘rca a n - ’ d i o t i a ’ a  t a m - c s  let’ r a c h e l , ci in ’eo t ob e ical kn oa - :iedge of the

u p -: - i - ’ - L a ; ’  - i  c-s of c-I i - ad- type surf aces for a c i v e n  area , and expected re-fl ect-

amn ce ~-a l-  - :  f~ r c l a d t’ ;;’e ’ ‘,- , .n :; use by Shen ik ~nd c lub [ 7 2 ]  and Shenk et al .

[ 7 a - ~ t a c - - , L b  I l - i a  Ie’c- - c!n , ananw ’ l c lo ud-  tvoe s i e nn a tnnr es for c l ou d ty pes over trop i -

cal  o c e a n s .  :- c ot ’ n  ~73 ] co mbin ed s t a t i s t i c a l  pat tern recogni t ion techniques

w ith ea~a :ce c:; ca cti c— c acac t in ods to cl a ssif ,- h igh- n-c-so ] uti on , dual -channel

1 cL ad s - ama - p ie - s a a \ - r -  r tr c:picaml oceanic regions. A comparative study of

selec t re !  f c -~ t e n n ’ a -  s - a s am ’ !  ~~ a i c al ‘a t tern recog ni ti on techni ques to cl assi  —

fy  tro l ic~:l Ocea n i c -c C a - , :  - - eeiS i ; ’ n ;duCt ’  d h ,~ P- ’ -i !di [ 7 7 n ] .  C l a ss i f i ca t i on  —
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accurac y deteriorated depending on the complexity of the cloud-type dec ision

problem . Op t ima l  th t - csl no lds , either for point -by-po int cloud-type signatures

or for decision reqion is in featut e vector space , did not re main constant  w i th

change in location or Se-dSOfl of observ ation. A method of cl oud classification

by cloud—sa mp le seqanent ati on and c o: a a pa r i son of te e s - a r c - nt  fe atur e- s n-ta s dev e loped

by Pan kh [77b]. The method was i rmd e iaende mn t of dc - si g n samples or pri or thres -

hol d selection techni ques . All of the above niultis p actr al techniques except

for that of Gre-ave-s and Chang [70] have been tested primarily or exclusively

on cloud data over oceanic reg ions. Further study is needed to determin e n-ihat

modifications must he made either in cloud -type siqm:a ture classification sys—

tems or featu re—extraction classification systems to discriminate cloud types

ove r lan d.
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3. 1.1. ‘: -t i m - ’k ‘‘an  1)1 “a i ‘ ( r a n  ha ‘ a r  (‘1 - ‘:‘l n !‘r ’mr-
C ~I a r C  n e . - a ’ i :  

-

The: earl I c a n t  at tm -n: ~ t ea to r- ,: mc t e a  clone . ce ’ ~ so ’s ’-

in-ac’i ’- r - d tllraei a , ’; a b r i c d,t n e s s  t ) : r r - a : ’ne cald C sasch t~e o t  all ~~~mct ’ ;

\‘?ith l n i c a t n e a c e c  ~‘olueea ~i i ao~ ’C: c ‘,-,‘er c ’  h0e3 r e m o t e  :1 cc - c - is -  ach e; arc h

‘c - ch ;a te -  with 7a am ’ - ht rcc - rs  y-ulues c- cc -n ea l to  or iec~s t hem c ‘‘ore

a c e  l:ec’srrc’,:ra cl . E:-: c’ caa - t for sam e. — c-ce Ic r_ s’ :;mrcrcl

renia- ,r ,s , roe:ic ’:’e -a c-f thira c i r r u s , or rc - ij 1Or~0 0 e- ;oslb a r c h

scam. t te r -e cl co:-e ’,’~ ct ivc  clo’:h c- lemor,t a h - 1 o’ .’ s c o e m e r mc relations

size , am. ia- -et ’~’-’sc threshold ce hou ’Lci h- c’ a cr ito rics. for

tWa c - a t e c t a o a e  em t :--
~-c- rarescaco of cloeml s a cme ca - ac t  a cha rT ;

: a a ;  t he c-ee c- ca m scar fe ce . 7~cccr:T±n -’ to f o e m s e  arc h

h e ar  [ 0 0 ] ,  a h i st c-oram-: ’e of the f rocaca cne ca y at  whio ’tc a 

-a i c - a - s T  c cc n rs  \\ - i thlo a ce r ih  a r - c a will co ret amera

a p- c-ne C : of  rena - Lb p Ga::z s i : .ee shams ’ ecc -n-eacs- :- :otic- ; ama c l ear  a rc - n a

e’ rc - c’c h- - cl thee cL or a r - a -a  ir La - — ‘a - -s ac-cm:: ( o cr  am cmr f uc -c  r o t h c - r

t h: ra l a c e - h  e e c - ~l;- m ’c )  . It - s - a - ,- - ,c ’r , r - - ,’-- an f ar c o c o a  r-arfea cos i t  is

dj f f :e c a’lt Cc ’ :!’ - t c ” - e i e m  ~:T ,a c- a n t  t en t t m ’  r ic ’ a t :  of who

C e u : W n a e e n c : : a r — s n a i a a  
~ 

P a n t  w hich  c- I ’m 1 t - o e l c a o : n c ’ -c ir  l ’s ’ - -

c - c an i _ n a  - 1: p r  - ; - a a

Li en i t a t : i n r a L :  of sensor  Syce tres s cc- ~- ,‘cll as v a r i a b l e

b r m s t a t n c ’ a::; r - . - a m a n m e a s fo r  a c loud  of r i v e n  r c fl e ct i v i ty  mu s t

be c o n a a i h r - n  - d t a r  both  mane 1 and outcamj t ic es t im i -n a t e s  of
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cloud cover . Thin c i r r us  in :  t r a n a : p n r : r n t  or s e m it r a nsp a r e nt

and t u e  r ef l e c tan c e  ch ar n n c t a e r i s t i c s  of the  u n d e rl y ing back-

g r o u nd  cl c ’t e ’ r c i n a -  the r ecord cad bri gh t n es s  i n ten si t y  level .

~Cma ii cu m u  lu a ; c] n u n  a ; below ) (  - so lu t ion  n~ ; e ( -  cc m a r t  be Sn-n - a :

c a n  t h e  m a n n c~c’ L u t e  the ice br i .qh t f l a2  sc -  an f fc ’ c La ;  t he  sensor rn- ; Ic-

V a ar i a b i l i  t~ c -a ;  of thea s igna l ~‘:a th in  a c e a n a c r a  s a a a t e n a , C~~- : r; ’ e a 5

of r c n p s ’m a s e  f rom one system to ano the r , weakn e s s  in the cr one s

track  nor eac n l i z a  t ion  t c ch m i c j ’a c , changes  in caser ca  c ama l ib r a  c - l a  an

~and c- ic- r c e i e a t i o n  in camesr a  r e ,”o on sc s u b s tan t i a l l y alter the

hric-htness reop en s- c of i n d i v idu a l  cloud e l em e nt s  f rom day  to

day

In l 9 P 4  , A r k ice - :  [ ( - ~~~ d i s c e a n s - c a n i  the  proh lc-r :o of c loud/back—

car o -and  t h r e n a h o l d  se lec t ion  inn c o n n e c t i o n  wi th  au t oma t i c

amn n : l v e n i e ;  of T i c - on e  I I I  t o l ev ie e i en  p i c t u r e s  to de te rmi ne l a t i —

t u d i r n a l  d i s t r ih e at i o r :  of c loub cover . i’srT~:ing ’ s approach  e-.’cs

t o  (~ a r t - l O P  t -ha suaaj oct ivo  j u c lm erient of a hu roan  observer  to

c -macc - an rca a s e r i e s  of t w o — l e v e l  th resholcece!  imaca’es to the

o r n c ; n ai ~i m a C c a l l  I L i -  i m ag e  to cbc -t c ’rcen i ncr w h i ch  of the thrcsh o lcbed

i n c - a i r e s  ;cr :t  f a i t h n f u l l v  rc ’pr ceh:aced the  c l o ud  b o u n dar ie s  of the

oric5’ i n n i  im a g e . For each  or b i t a l  sc -qu a -ass ’  a nc-nw t h re sho ld

was  chosen . I t  was  feunci , howevcr , t h a t  the same threshold

could h a -  used for  each s a te l l i t e  pi c t u r e  w i t h i n  a g iven o rb i t .

Ka ta L~~~~
’
~~~] 

c o ns tr u c t e d  an g r a d i e n t  i mag e  to au t o m a t i cal l y

35

Ia ‘~~ 

~~~~~~~~~~~~~~~~~~~~~~ 
h~~~~~c e~_~~~~~~~~~~~ ~~~~~~~~~~

-

~~~~~~~~~~ ‘~~~~~~~ ‘ ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~_



- - - -- -~~~~ ‘- ----~~ ~~ - -~~~- -

d e t e rm i n e  a b r i g ht a n e s s  t h rosho~~d.  The g r a d i e n t  image is de-

f in e d  as the image whose value at every point is given by

G =

w h e r L - I i n-; t t w -  bricli tnc sa va lue  of t he  g ivcam p o i n t .  C

“an baa eap ca-r oc :ir-iated by J C J J where

I I I I  = max~ 0I/~x l , I ~I/~ y~~) + min{ I 0I/~x I ,  ~I/~yI).

— 
In order to facilitate hanhling the pictorial data in packed

form , the c c u an -t i t \ ’  actually used for computation of the gra—

- - dient ina~ e was 2 I G !  . The cu e nu l at iv e  frequency percentile

was calculate- h f o r  each gradient level in the gradient image.

The smallest gradient level g for which the cumulative fre—

quceecy r - crcen ti io  was greater than or equal to a given value

p was then s e l e c t e d .  Experimental resu l t s  were ca lcu la ted

for  p 7 5 % , p = 8 7 . 5~~, and p = 9 3 . 7 %  wi th  the va lue  of

p = 8 7 . 5 %  the persona l  choice of the a u t h o r .  The average

i n t e n s i t y  of those points  at which the gradient was at least

g was used as the  t h r es ho l d  for  c lou c 3/b a c k c a ro u nd  separa t ion .

Shenh and Salomonson ~7i)  sugges ted  us ing  two br ight-

ness th resho lds  to divide the satellite image into three

data sets —— data where the resolution element is clear , data

where the resolution element is partially cloud filled , and

data where the resolution element is completely cloud filled .

Let be the number of points in the first data set, N2 the

flu -War  of pci me ts in the second data set , and N3 the number of
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points in the third data set. Then the percentage N0 of cloud

cover was calculated as

N +2N
a N 

_ 2 3
C 2(N 1+N 2+N 3 )

The association of a weight of 1 with elements in the second

data set and a weight of 2 with elements in the third data

set implies that a cloud cover of 50% is assumed for every

- . partially cloud-filled resolution element. This two—threshold

a 
method is contrasted with the single-threshold method which

divides a satellite image into points where the resolution

clement is clear and points where the resolution element is

partially or ccr’rnletcly cloud filled. For a typical situation

in the tropics in which the average cumul i form cloud size is

4 km and for a tynical sensor resolution of 4 kin , the sing le-

threshold meth od  would est imate a true cloud cover of 20% as

70% cloud cover. The authors concluded from studies on simu-

lated data and high-spatial resolution (300 feet) Apollo 6

photographs that the value of the ratio R of areal cloud size

to anreal-resolution element must be at least 100 if cloud

cover e s t i mat e d  f rom s ing le - th resho ld  methods  and actual

cloud cover are to agree withirn approximately 10%. However ,

if cloud cover is estimated by the two-threshold method , good

cloud cover estimates result for values R � 10. If the value

of R is know n , n ornograms presented by the authors can be used

to obtain true cloud cover from estimated cloud cover.

The questi on of automatic selection of the one or two

bri g h t ne ss  t h r e s h o l d s  did not arise in the study of Shenk and
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Salomonson [71]. The sing le-threshol d method applied to

simula ted and high-resolution cloud data involved counting

manuall y for each of seven resolution sizes the number of

resolution element s which contained no cloud e)ements . Simi—

larly, for the two—threshold method , a manual count was made

of those resolution elements which were partially cloud

filled and of those which were comp letely cloud filled .

- -
‘ 

Automation of a multiple threshold , weighted histogram

- 
- model for cloud—cover estimation was described by Miller [713

and Miller and Feddes [71] . Satellite image data compressed

from a 0—63 scale to a 0—1 4 scale was divided into the five

equally—spaced brightness ranges 0-2 , 3-5 , 6— 8 , 9—11 , and 12—

14. With each brightness range was associated an empirically—

derived seasonal weight. For October-May , the weights

W . ,  1 1, . . .  , 5 , fo r  the five  brightness ranges were 0 , 2 , 7 ,

8 8, respectively . For June—September , the weights

~~~~

. ,  ± 1, . . .  , 5 , for the f ive  brigh tnes s  ranges were 0 , 2.5 ,

7.5, 8, 8, respectively . Higher weighting of classes 2 and

3 for tine suncrer months reflected the increased frequency of

occurrence of small  cumulus  c loud iness  d u r i n g  the summer.

The percentage N
~ 

of cloud cover was calculated as

W . F .
N = ~ 

i=l ) + k
C 64

where

w a i q h t inq  factor for class I

F. = fracreer cy of occurrence of the i th  class
3-

k D .:-1 , a c omp ut e r  t~ uncation constant.
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values , although in general agreement with concurrent

surface observations , showed a consistent tendency to under-

estimate surface reports of cloud cover. ?~iller and Feddes

[7~J ascrib u~ the differences p r i m a r i ly  to differences be-

tween the field of view of the surface e: : ;c -rve r  and the angle

of view of tine satellite cam-era h-:hich r e - s al t ed  in an over—

estimate of cloud cov-~r from surface observations) and to the

lower r r socra n -e thresPold (i.e. , lack of s e n s i t i v i t y  to th in

cirrus or to s: all , scattered cor.vcactive elements) and re—

solving cower of the satellite sensor. Thc- authors concluded

that the au tca: c t c - ~! values for were at least as good as

th~ sca w h i c h  co u l d  be d e r i v e d  by c-ye from satellite pictures.

A thres 1 :o~d ~ cc:: be appli ed to ipfrared measurements of

cloud data to d~~sc r i m i n at o  c louds  f r o m  background . Over the

cc-ca-c :, an ap;-rc;-riate value for T for each grid area of the

ima ge would  be either the sea surface- temperature T within

that grid area or T—k where k is sonic small positive constant.

K o f f l e r  et al. [73] subtracted a constar.t of 5°C from the sea

surface temperature to d e t e rm i n c  the grid area thresholds ~ .

All grid p o i n t s  with infrared te:-perature c , r e at e r  t han  or

equal to ~ wore classified as background points.

A statistical histogram method to determine the sea sur-

face temperature values T from nighttime 3.8 ~im infrared data

is given  in Smith Ct al. [-70] . Thca following procedure was

used to analyze the  temperature histogram . If a clear dis—

tribution (Gaussian) could be detected such that the maximum fre-

qur’ncv of a n o i n t -  of t in ’ clear cbs~ ri bution ~‘as both at a t enr~ eratura
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greater than freezing (273°k) and greater than 10 percent of

the total number of observations , then the histogram was con-

sidered to be sufficiently cloud free to be acceptable for

the second stage of analysis. Find the point Mslope on the

high t~ nipercture wing of the clear distribution where the

change of frequency with temperature is a maximum ,i.e., the

point of maximum slope . Define Mhigh as the highest observed

temperature value with a frequency greater than 1 percent of

the total number of observations. Define T as

T~~~M - oslope

where 
-

known standard error of measurement

For this stud y (~:imbus 2) , o = l.5°~~. T will usually be

greater than the modal peak temperature of the clear distri-

bution wh en clouds exist. If the difference between Mhjgh

and T is greater than 3a or if the change of frequency with

temmorature at ~ is less than 3 percent per degree K ,- slope

then ti n e high temperature wing of the clear distribution is

i n f l u en c e d  ~~~
. c l o u d - c o n t a m i n a t e d  measurements  and sea-

surface temperature cannot be specif ied . Other wise , specify

the sea -surface temperature as T.

Sea-surface temperatures for areas of severe cloud con—

tamination ~.-:ore inferred through space and time interpola—

tion procedures. In a few cases in which the histogram

-
~~ t echn ique f a i l ed  to differentiate between cloud—free and

cloud-contaminated temperatures , errors were attributed to

the existence of low-level , un i f o r m , overcast conditions.
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~hc authors suggested using either spatial gradient consis-

ten cy checks and/or time compo siting techniques to filter out

erroncon: ; sc- a temperatures. Relative discrepancies between

the histocram sea-surface temperatures and ship—reported sea-

surface temperatures were generally less than l°K.

Smith and Rao [ 7 ’ J  developed an algorithm to determine

both davtirr.o and nighttime sea—surface temperatures from

sj a t i a ll y con t igu o u s  sets of s imultaneous 3 .7pm and ll~ ir

infrared m e a su r em en t s .  The contiguous resolution elements
— 

we-r e  an;sumed to have the same average cloud temperature and

sea-surface te:r~orature , i.e., the same type of cloudiness

condi tions. I-cr resolution elements 1 and 2 and spectral

winclo;--u; 3.7 j~m and 11 ~Jm , the ratio of the cloud amounts of

the two resolut ion elements wer e eq-acted for each spectral

window , i.e.,

13 7  
- B3 7 (T5) 

= 

— ~ 11(T s )

13 7  
- B3 7 (T s) Ill Lii(T

s
)

mea :;ara-1 I- ediar::L - f o r  r eso lu t ion  element r

f o r  s~ - - e n  al wav er -an -Per S

Bs (T s ) Pl anck r a~~icr c- ~cr c-r-ec -t ral waveri umber S

The Planck rad i ance B5
(T) i s  a f un c t i o n  of temperature which

is given by

B
s

( T)  C1S
3/ ( EX P (C 2S/T) — 1)

w h r - r c
.

f 
4 1

iI .~ .~~~~ ~~~ ~~~~



C1 1.19061 x 1O~~ erg— cm 2—sec~~

C2 = 1.43868 cm—deg

If the relation R(T) is used to denote the result of equating

the ratio of cloud amounts for the two spectral windows , i.e.,

R (T) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ then we

can solve for Ts (sea-surface tempcrature) by settinq

R(T) = 0. The first order Taylor approximation for T (where

the superscript k denotes a quantity evaulated for the kth

iteration) is given by

- T~~~~ = T 3
~ — [Rk/( ~R )kJ

where

~R k 2 
— 

1 k 
.r 2 

— 
~B3 7  k

( ) — [13 7  3 • 7
] 

~T ~~ii 11

with an intianI cnuess tersroraturc- of 3l0°k , a rela tion was

usuaL y ebtain r-d in less than five iteration: ;. This multi—

spectral aoprcach was one method us ed by ~miti. to resolve-

the ~ so P l c m s  of interpretation of dayt .e 3 .7 am data in

which cloud contrc;incted temperatures can he c~ -acl to or

lase r t h a n  c l e ar  sky bri g h tnes s  t em p e r a t u r e s .

A n o th e r  acoroach sugges ted  by Smith for determining sea-

surface temperatures using sing le-channel data was described

in a paper by Leese et al. [71]. This method assumed a

Gcu :;s i an  d i s t r i b u t i o n  of the system noise , but unlike the

rr tho cl of Smith et al. [70] previously reviewed , the value c

of Ua r: standard error of measurement (noise) was not assumed

to L~ - known . Given any three temperature classes of the
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clear distribution , the sea-surface temperature Ts which is

the mean value of the distribution from clear atmosphere

samples was computed as

T = 

(T3
2 — T

1
2)ln F

1/F2 + (T
1

2 — T2
2)ln F1/F3

S 2(T~ 
— T

2
) in F

1/F 3 
— 2(T1 

— T3)ln F1/F2

where

T . ,  i = 1, 2, 3 is the i th tempera ture  class

F1, i = 1, 2, 3 is the frequency of occurrence o~

temperature class T1.

A diseributiori of values of T5 was obtained by using a number

of cc:sbinations of temperature classes taken three at a

time . The moa y-~ value of this second distribution was used as

an estimator for the sea-surface temperature T5. Six cloud

and noise  contamina tion  tes ts  had to be passed by the second

distribution of values for Ts for the sample to be retained

for sea-surface temperature calculations. Since cloud layers

can produce histograms of the same shape as those, obtained

from a clear atmosphere , Leese suggested that instead of just

restricting Ts to be above 273°k , a suitable test should be

developed on the basis of first—guess fields. A first—guess

field for the sea-surface temperature value could, for ex—

ample , consist of the previous day ’s temperature combined

with appropriate limits for acceptable twenty—four hour

changes (obtained from gradient calculations). Results in-

dicated that errors of less than 1°C should be possible for

areas where the temperature gradient is less than 2°C per
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100 km . For x ~-u ans wh-a e 1~~ t ~- n t ~ ~~~~ ur e  g rad i e n t  was 2 to

4°C r~~ 1 100 kin , visual data 1 n  b’ n n c l u d ed  to reduce

cloud contamination erroi-s . L : ce’ea 1t s may be needed in

earth location procedures ii an. ~~~ i 1~~~~~~i of l~-~ s than 1°C is to

be n : i n t a i  :;c d for  reg ions  in ;  s-h . i c h  the- t :- -~ - rature gradient

is l a rge r  t h a n  4 ° C  per 100 km.

Star ua and Vonder  f laar  [ 7 u J  ~:u ~qus t t- d as a result

of threshold studies in the visible channel that some com—

binat ion of threshold c r i t e r i a  in several spect ra l  channels

would be able to detect clotacl contamination with better pre-

cision than single—channel thresholds. They investigated two

threshold methods for the visible channel. The first method

compared a line plot of relative radiance vs. sample number

to a corresponding line on the given picture to manually de—

t e rmine  a th reshold  between cloud and background regions.

The second method analyzed the histograms of radiance levels

within a giver, grid. For grid areas over oceans with a

reasonable amount of clear area , a large peak of roughly

• Gauscian shape represented the clear area. By forming a

Gauss ia n c u r v e  f r o m  the  da ta  on the left—hand side of the

peak ( th e side f r e e  f rom cloud interference), it was possible

to p r ed ict t he  clear area peak . The point at which the

Gaussian curve starts to rise again , or a few radiance Thve].s

to the cicudv (riqht) side of this clear area peak , was

Chosen as the  t h re s ho l d .  When in doubt , the threshold was

chosen to o ver e s t i m a t e  the cloud y reg i o n s .
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3.1.2. Automatic Cloud-Type Classification Systems

Various automatic cloud classification systems using

features derived from visual satellite data , infrared satel—

lite data , and rnultispectral satellite data have been devel-

oped from 1964 to the present date . :n this section , a brief

survey of t e chn iques  and results of single—channel cloud clas-

sification systems is followed by a more comprehensive review

of mu ltispectral systems.

Conover L~2 
] published in 1962 a guide to cloud inter—

-
• pretation f rom sa te l l i te  p ic tu res .  Features selected to dis-

criminate cloud types were form (round , curved , or elliptical) ,

pa t t e rn  (banded or randomly s p a c e d) ,  t ex tu re  (smooth versus

fibrous), brightness , structure , and dimensions of the

patterns and forms . Each cloud type was associated with one

of four brightness classes -— dark gray , gray , white , and

very white. The author suggested use of automatic methods

fo r  cloud r e f l e c t i v i t y  con tour ing  as an aid to photoin te rpre—

tation of satellite images. The idea of characterizing

cloud types by ranges of measurements in one spectral window

was a forerunner to completely automated cloud-type classifi-

cation schemes such as that of Shenk and 1-lolub [72 ]  in which

ranges of measurements in four spectral windows specified a
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unicue cloud l yme .

In 19G-~, Leese [~~~-~ ] applied raultiple—discriminant

a n a ly s i s  tec~ :i~:a-:- s to the problem of classifying low—level

cvm ul it or: -e cI eu-i patterns by cloud amount , size of the cu~mu—

lifer::; cu1l~~, ~aad size of the cloud bands. Twenty—three

syri3a~ ic fc’a-~ures consisting of variables such as latitude ,

lonc:itude , re ean  solar time , surfacc—gecstroohic wind speed ,

and l a t e n t  heat flux w e r e  used to cate’jorizo the cloud

patterns into cloud cover groups , cloud size groups , and

cloud Lancl iarn groups . Cloud amount was found to be most

closeiy related to the location of the observation with re-

ference to the center of the anticyclcne . Size of the

cum u lus c e l ls  ;- -aa most closely related to the s t r u c t u r e  of

the wind field between the 850-mb level and the surface.

Discrimination results between cloud banding groups were not

as successful as discrimination results between cloud amount

groups and cloud si;:a oroups. More objective techniques for

tine eriginel description of the cloud ~atterns (such as in—

creased number of cloud amount groups , infcrmation on cloud

patterns en cUfierent size scales , and a coordinate system

to describe the location of the observation in the anti—

cyclone) combined with improvements in the sensor system of

the satellite were suggested as possible factors which would

improve classificaticn results. In particular , two—

dimensional spectral analysis techniques such as numerical

fi1tcr~ r:g she-aId be used to provide information about cloud

pat terns on at least three ::ales —— the synoptic scale

‘1
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(more than 50 mi) , the nncsoscale (between 10 and 50 mi), and

the submesoscale (less than 10 mi)

Rosenfeld E 651 discussed a scanning window approach to

automatic cla ssi f i cation of cloud pat t e r n s  i n to  ca t egorie s

representing sparseness or “brokenness ” , f i b r osi t y , elonga-

t i on , regularity , straightness , and convexity properties .

Quantitative measurement scales for these :~arameters were

derived from psychological studies of human judgments of

there parameters in a series of cloud ph o tog raphs.  In o rder

- 

- 
to d i s c r i m i n a t e  bet~.- ’ecn sol id b lack  ( b a ck g r o un d ) , solid

- • 

white (cloud ) , and broken cloud regions , the number of back-

ground elements in the scanning scnuare window of an image

was counted for each posi tion of the window . If the number

of bacherouncl elements fell below a threshold T , the scuare
- - w -

was  called solid white. If the number of background elements

was greater than a threshold TB where TB 
� T

~
, the square was

cateqerized as solid black. Otherwise , it was considered as

broken cloud , boundaries between regions of different types

.~crc m. rkcd . P -u c n g e s t c d  window sizes for discrimination of

:loucl patterns with respect to the above parameters were

~x 5 r e s o l u t i o n  e l emen t s  for  “brokenness ” and 15xl5 resolu t ion

~lemcnts for shape and size properties.

Katz  [6 4 ]  der ived m o t i o n — i n v a r i a n t  f e a t u r e s  to describe

the degree and direction of alignment of striated clouds and

consid ered features which would give information about the

distribution of cloud sizes in a region . The ratio of the

axes of the elli pse of conccntration of the central hump of

the autocorrelation function r (h,k) was used to measure the
47
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degree of alignment of cloud streets. The direction of the

major axis was taken to be the direction of the streets. The

ellipse of concentrat ion was taken as the contour enclosing

the central hump of p(h ,k) for which p(h ,k) = 0.2. The di-

rection of the major axis of the ellipse was given by

2i.i
tan 2O = —

~
‘20~~ 02

where are central moments . The ratio r of the -axes is

r = where and A 2 are the roots of

(~12o~ o2
_
~ l1

2) ~2 - 

~~02 
+ 

~20~~ 
+ 1 = 0.

TI-ic autocorrelatjon function p(h ,k) is the normalized (divided

by the individual variances) autocovariance function C(h ,k)

where

C (h,k) = JJ 1 I (x rY )_ m J E I ( x - h t Y _ k) _ m ) dxd Y

with

I(x ,y) brightness level at point (x ,y)

m = mean value of I

The feature a(t) described by Blum ~G2 1 where a(t) is the

area at time t of the region enclosed by a wavefront moving

from a pattern at constant speed in all directions was pro-

posed to characterize the distribution of cloud sizes. As

the clark areas overrun the cloud areas , the clouds beg in to

disappear —— for a convex cloud , this would happen in the

time it takes the wave to traverse half tine width of the

cloud.

Darling and Joseph ft U applied five 1inea~ decision
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t ec h n i q u e s , one non l inea r  decision technique (“ M a da l i n e ” )

and a s c r een ing  m u l t i p le regress ion  technique to ca tegor ize

clouu patterns into cumulus and noncumulus classes arid to

ca tegor~~ne c umu l u s  clouds  i n to  cumulus  pol ygona l  cell

p a tt e rn s  and cumulus solid cell p a t t e r n s .  For the l inear

dec i s ion  func tion te~chniques and for M a da l in e , a group of n

th~ c~ h~ lrJ units b. (j) ± = 1 ,.. .. ,n were randoml y connected

to elements in the pattern space. The output of the ith

luqic unit 1 (j) for the j t h  p a t t e r n  is 1 if a function of

its i n p u t s  - x ru c a s  a threshold  and 0 otherwise. The thres—

hold w a n -  defined by a q u a d r a ti c  swi tch ing  s u r f a c e

w~~: re v e c to rs  
~~~~~ 

and are S eLT.plO means and and 
~2 

are co—

v a r i an c e -  ma tyiccs for classes 1 and 2 respectively and X is the

p a t t e r n  v-~c-~~- r .  The form of the decision function D(j) for

t h -  u n ; -  :er_dccisirs~ -eec:hnicjues was

D(j) = I w .b . (j )  - 0

w .,i = 1,... ,n are property weights

C is tile r~ soen::c unit threshold

h 0 - i q : n t  s a n d  response f u n c t i o n  were ca l cu la t ed  according  to

the followina five algorithms —— forced  l ear n i n g ,  Bayes

w c iqh t s , e r ro r  co r rec t ion , i t e r a t ive  des ign , and mean square

¶ errer. The first three methods are associated with the ~

p-arccj-tron of Rcsenb]att. For ? h a d al i ne , a second layer  of

thresho ld— )o~~ic ur.iin~ was conn ec t ed  between  th e first set and
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the response unit (decision function).

For the screening multiple regression technique , twenty-

eight features computed from a binary representation of the

scene were scr (-ened at the 0.01 level. For this technique ,

the decis ion  f u n c t i o n  was a linear multiple regression equa-

tion of the form

p.

x = A x + A x +...+ A x0 11  2 2  p p

where

~ n2/(n~,-fn 2) in class 1xO = 
I

~ —n1/(n1+n2) in class 2

x0 is 
or; estimate of

ri is the number of sasules in class1. -

x - rs the devia tion from the moan value calculated over
1

bo th class es

A . ‘s are constants to be determined by least sciuares.1 -

At each step , the particular x~ having the highest correla-

tion r0± with is added to the equation if the reduction

in variance r01
2 is greater than 0.01. The correlation r01

is dcfiincd as

r0
.

where

d~ = difference between the mean value of x 1 in class 1

and its mean value in class 2

S. . sum of squares of x . over both classes.1]. 1

The value of A1 is given by
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d .n n
A = 

i l 2
1 S. - (ri +n

ii 1 2

After the selection of each x1, the remaining xi’s are ortho-

gonal ised w i t h  respect to tine selected x~ to yield an equa—

tion for witin uncorrelated terms . The decision rule is; if

> - 
~~[ ( n

1—n 2 ) / ( n 1+n
2)J , assign the pattern to class 1.

Otherwise , assign the pattern to class 2 if

— 

~~~(n
1—n 2

)/(ri1+n
2
)}. For the classification of non—

cumulus versus cumulus clouds , the features chosen were the

80- contour arezi (area bounded by the Y axis and 0.80 auto-

cor r e lat i o n  contour  for x > 0) , the brig htness  var iance , and

the re la t ive  f r equency  of clc-tud size 1 to 25 ( i . e . ,  from 1

to 25 resolut ion e l e m e n t s ) .

Decision accuracies for the error correction procedure ,

iterative desion , ;ladalinc , and screening multiple regression

teciiniis ues were close to 901. The authors noted that the

screeniins multiple regression technique with only three to

four d iscriminators perforated as well or better than the

ot iner  tec i i i n~ qucs which usod a p p r o x im a t e l y  4 0 0  p roper t ies .

They recommended e n l a r g i n g  th e’ set of features to include in—

fe~ m;;tien content . in the derivative , curvature , gradient ,

and Lap lacian of the brig htness image , tiie coefficients of

the power spectrum , and the characteristics of the auto—

correlation function obtained by r o t a t i ng  a pat tern  about its

center oi gravity.

Booth [73] categorized 32x32 visual arrays of J\T S— l

images into a 5—group model ar i d a 3—group model using multiple
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discrin;inant analysis and perception traininu methods. The

5—qrcu : madel consisted of

(1) predos-inaritly s i n g l e - l a y e r ed , low-level (~ 8000 f t )

cloud regions

( 2 )  predominantly sin g le-la y ered , middle - or single-

layered high-level cloud regions

(3) predominantly multi—layered or large convective

cloud regions

( 4 )  cloud reg ions conta ining more than one of the above

groups wi th  one group not dominant

(5) none c—f the above (i.e., overcast and clear—sky

cloud regions)

The 3--c :-oua model  consisted of classes 1, 2 , and 3 above.

R e s u l ts  of mu l t ip l e  d i s c r im in ant  analys is  us ing f o r t y — s i x

f e a t ures assumed to be normally d i s t r ibu ted  with  the same

covar iance  m a t r i c e s  ranged from 68% decision accuracy for

group 1 in dopo n don t  ( t es t)  data for  the 5—group model to

92% decision accuracy for group 1 i ndependent  da t a  for the

3—groan model. hvcry m i s c l a s s i f i e d  grcup 1 samp le was

label led as group 3 by the mul t iple d is cr i m i n a n t  c l a s s i f i e r

—— tln ’i s p o i n ti n q  out  the c o n f u s i o n  bo~ ween groups 1 and 3.

Tests on independerL t data were performed exclusively on

observations from group 1, since the pr imary  intent of this

classification system was to isolate those regions which

would be suitable input target areas for t ine automated

ope ra t i ona l  system of NOlu\ for computat ion of sing le-layered ,

low-levc:- l wind \r ectors.
52
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Experiments to separate  group 1 from the combined groups

2 and 3 by percc’pt~ on analysis failed after 454 iterations.

The similarities between groups 1 and 3 obviously led to the

lack of l i nea r  s e p ar a b i l i t y  be tween  o b s e r v a t i o n s  f rom group 1

and observations from groups  2 and 3 . Percept ~~on class if ica—

tion of 787 test observa t ions  in to  c loud and no-cloud groups

resulted in 653 (83%) observations correctly classified.

Sugges t ions  by the au thor  for  improvement  of decis ion

accuracy wer e to

(1) construct a new 5-group model consisting of low-

level sing le-layered regions , middle—hig h level

s i n g l e — l ay e r e d  regions , m u l t i — l a y e r e d  or convective

regions , overcast regions , and clear-sky reg ions ,

(2) augment the pattern vector with features from in-

frared satellite data such as cloud—top temperature

to help resolve ambiguities , for example , between

gr oups 1 and 3 , and

( 3 )  gon ’ratc on o p t im um  inpu t  p a t t e r n  vector by per—

formi ng sc reon ~~nq analysis on features derived from

the satellite data.

Sat e l l i t e  :~n f r a r e d  r ad i a t i o n  (IR) temperatures segmented

a t each gr id  scuare ( 32x 32  IP. spots)  in to  four  in te rva l s  de—

penclent on svnomt i c  t empera tu re  f i e lds  obtained on a 12—hour

basin from Lhe National Meteorological Center (NMC) were used

by I<offler et al. [71) to generate pictorial displays of cloud-

type information consisting of four gray shades. Each of the

four gray levels represented a cloud catecory as shown in
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Table 2 .1  below.

Clo ud Top f l e i c ;n t
Gi ay Shade Tempera tu re  I n t e rva l  Cloud lype  I n t e r v a l

bla~~- I n fr a r e d  Temnc- r a ture  no clouds
a

dark gr a y  ~1—5°C > Infrared Tern — low clouds surface — 700 sib

p er atu re  > a 2 layer

li~~~~t g~~ y 
~2 

° Infrared Tompc’r— middle 700 sib — 400 sib

ature  13 clouds layer

white > Infrared Temper— high above 400 tub

a t u re  clouds layer

Table 2 . 1:  Cloud c l a s s i f i ca t i on  system of K o f f l e r  et al. [fl] . Thr esho~ d
values 

~~~~~~ 

T 2 , a 3 represen t, respect ively, Ny - C  t emp era ture
va lue r  per grid area at the su r f a c e , 700 tub , and 4 0 0  sib.

Assumptions inherent in the use of this classification scheme

are:

(1) clouds ore comp letely opaque ,

( 2 )  r ad ia t ion  emanates f rom cloud tops ,

(3) there are no rap id atmospheric changes in the time in-

terval between the NN C data and the infrared temperature

data ,

(4) the earth’s actual surface temperiture is constant over

the area of a grid square and equivalent  to the N~C—

su pplied ear th  su rface  temperature , and
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(5) errors cauncd by assignment of an IR temperature

measurement to the lowest pressure layer in cases

of a non—uni que correspondence of a particular IR

tem’ -e r a t ur e  to a given pressure interval resulting

from the exisld:-nce of an isothermal or near—

isothermal atmosphere or from the existence of in-

versions, are minimal.

Assampti~ :n nurihar (1) leads to errors of interpretation

especially is the case of cirriform clouds. For cirrus clouds

with an ice concentration of 0.01 g.m 3 a thickness of al-

most 5 km is required to assure that the assumption of

opasucoess is reasonably satisfied. Thin trailing edges of

ci rru s wh i c h  ge ne ra l ly  exh ib i t  low em~ssivity may be classi-

fied , for example , in the 700—400 tub layer rather than the

layer above 400 tub. For this reason , it is suggested by

Xoffler et al. P3] that the cloud data be interpreted as

ly ing above 700 mb r a th e r  than exactly within the 700—400 tub

layer . If assumption number (4) is not valid over a given

NYC gr i d area (12 km at 45 ° N)  , then there will be errors in

the calculation of the amount of low cloud. To insure that

earth surface view i s  act included as low clouds , a f a c t or of

- -
~~

- 5°C is subtracted from the surface temperature 
~~ 

supplied by

• NMC .

Results obtained by ~off l e r  et al. E73 ] show good large—

scale agreement with surface observations and pilot reports

while offering the advantage of greater geographical cover—

ago. The authors state that “problems and errors of the
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system are probabl y no greater than that of the surface

observation s y s t e m . ” There  is however a tendency to over-

est imate  cl oud amount ~ nd u n der e s t i m a t e  t he  t empera tu re  of

cloud top heic ’bt s  as a r e s u l t  of n a t ( - l  l i te  sensor r e s o l u t Lc n .

If t ine s i ze  of a c loud elom-:--at  is n~ ar or below the sensor

r c s” l u t  ion , tb -i’ IR t ( - : :~ ; - - rature- spet~ w i l l  r e pr e s e n t  a corn —

b i nat i o n  of t h e  t o m p c r a t u r c -  of t ine s u r f a c e  and the tempera-

t u r e  cf  th e  c1 Lud , thus e a a s i nr ~ the  e n t i re  a rea  to be c l a s s i —

f i c  d as- c loud  w i t h  the  cloud t c :  bolih t ~- lac o d  at lower than

oct u~l 1 v ol .  This typc c-f error can b - c:: :tc- d ever  areas

of ~h 1 r  v~ ath canal ~ :; ty n ical  of c n 1 - - : n i c  regions. The

g iv c : ,  c 1 a s-n f l i c a-~ioa s ys t e m  c~ n c ~u -~•-li’ -d over oceanic re—

in the ::-~~1.~~~:. ~~ jn- - ncse i- :h- r~ ~T-hT d a t a  is not a v a i l —
rver ~ iC :.i t C -  - rzntur ~i ~-~ofli- s dL-tc-rs~~r~od from

:et ’c ~~~~ ma~ cs g •~~n a~~.-d from satellite

f Y  - e t a  a:; cen:ri 1 -:d 1:. hao

h : i ~t i~~ ~c s l y en’ c f ‘ f l is t  at~ 
- s- at mu ltisp-Lctral

~ - tif ;c :~~.on wa n ~~~li’ ; -rh ef Gr oa v cs - a d  Chane

7’~’] ~~~~~~ ci .  i-- -’~~ .i~ 
-
~

(~~) an ‘vsi’• o’ rh ~-~a ti ~--~ ~ca din:r~ ijati-uns of

f i ’ .~ . ci :.i ~i:: -~~ e:T i a :  e .r-~-~ — ’h .nnol rad~ c-m-:-tric

u - t L s -  at rp’-c ’.ral nt- rucis .2—4 .0 ~aa , 6.4—6.9 ~rn ,

O I V i  iC -il n ,

( 3 )  derivation of d c-ad s~ :natarc’s from mean and stand—

ord ~cv iatio:s obs-:-rv~ d in the reflectance channel

( . 2 — 4 .0  a m ) and the tc-mseraturc channel (10—11 am)

L (3) ir-nic -men tation and tc-rting of a decision system

56

T

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~
•--••—~~ • 4



r - -  

_ ._ j -:
~~~~~~~~~~~~~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

~~~
— 

~~~
-— -

~~~~~~~
- - - -

based on rectangular decision reg ions , and

(4) formal development of a decision matrix system for

elli ptical decision reuions.

Data from Nimbus II at: p] aces where a r e l a t i vel y un i fo rm

cloud cover was  reported over a large area , where there was

-

• no rap id clearinq or buil dup of clouds , and where ground—

obse rved docu mu n~ ation of cloud typo and cloud cover was

available wore divided into a test set and a design set

which was used for development of cloud-type signature3 for

five differe n3 cloud t\-pos categorized as follows :

(1) cusa lus

( 2 )  r tr~ tu n and/or stratocumulus

( 3 )  a lt on umulus

( 4 )  ci r r us

(5) cunulonirabus.

An analvais of the statistical distributions of each

cloud t’,n - -: in cach of the three  r ad iornot ri c channe l s  re~’oaled

that wi:~~e t L r ~ d i nt r i b o t i o n s  in the reflectance and tcmpcra—

ture ~ h a n : o - 1 r  - ‘.:hib.~ ted characteristic maxin :~ and spreads per

clout: tvt -o , t he  in ‘har:~.ati en content of dint ri butie::s is. the

wet  -r  v a n or  ch an n e l  (~~. 4— 6 .9 am) was low in t e rm s  of cloud-t•ype

d i f f en n t i at i o n . A or iTr  ;ry aci \ : .nt ace  of i n corp o r a t ir a ;  t e r n —

p e r a t ur e  dat a  f rom the  ~-. a t or - v ~-pc r cha n ne l  in to  a g i v e n

clasnificotic~ schc-mo w-s~ th e  f a c t  tL .t c lo u d  d a ta could

easil y be nr-pareted fros c lea r  s k ie s  by classifying all

p o i n t s  as char iri which tb: t e m n e r a t u r e  obt ained  from the

w a t e r - v a p o r  channel was g ’o-- e t -  r t h an  2- ’~0°1- .. This  t ]nr esholc1 —
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proved adequate even in identificat ion of tenuous cirrus as

cloud data. Icith the assumption that the distributions are

appro:.:ir;etely Gau::nion , mean and standard deviations for the

f iv e cloud typ os in the reflectance and temperature channels

were comnuted as shown in Table 2.2 below .

Cloud Tumo T o ( )  R 0(R)

cumulus 274°K 4.8°K 0.21 0.06

stratus/stra— 2~ l°K 2.8°K 0.59 0.06

to c U: i 1 us

a l tocas-ulus  262°K 5.0°K 0.54 0.08

c i r rus  295°K 3.6°K 0.10 0.03

cumu lon imbus  224 °K 6.4°I~ 0.62 0.09

Table 2. 2 : Cloud-type signatures used by Greaves and
Chang [ 30] .
~ represents mean temperature in the spectral

interval 10—11 pm

o(T) represents standard deviation in the spec-
tral interval 10—11 pm

~T represents mean reflectance in the spectral
interval .2—4.0 pm

o (~~) represents standard deviation in the spec—

tral interval .2-4.0 pm —

It should be noted that the relatively high value of ~ for

cirrus is a r e s u l t  of t r ansmiss ion  to the satellite of ra—

diation from J owc:r levels. ‘~he standard deviation o (~ ) which
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represents the degree of nonuniformity in cloud-top height or

cloud thickness is seen to be maximal for cumulonimbu s obser-

vation s .

A given data point wi t h  reflectance R and temperature T

was classified as belong ing to cloud type i if

I R  
— 1< o (R.)

1 1

and

IT — T . I  K o (T.)
1 1

where 
~~~~

, C1 1, o (R1), u (T~ ) are values given in Table 2 above

and K is a r ange  factor chosen as K = 2.5 for the given imple—

m entL t t i on . The authors suggest that the optimum value of K

for cla: sification of most data points without excessive over—

iap between cloud types lies betweex~ 2.0 and 2.5. In cases

where a data p r in t  fell into overlapping reg ions of two di f f-

erent cloud tvDos , it was considered to be correctly classi-

fied if either of the cloud types corresponded to the ground—

truth identification (which was based on data from ground

observations as well as analysis of satellite photographs).

The percentage of correctly classified data points per

cloud t v n a  were  as follows :

(1) 43~- for cumulus

(2) 78~- for stratus/stratocumulus

(3) 72~- for altocumulus

(4) 80% for cirrus

(5) 34% for cumulonimbus

The authors atLribute the lack of success in point—by—point

identification of cumulus and cumulonimbus to the nonhomogen—
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eous nature of those cloud fields and attribute the high de-

gree of success in recognition of the remaining cloud types

partially to the fact that the test samples consisted only of

regions identified as being covered by a single type of cloud-

iness. They suggest that spatial frequencies be considered to

facilitate the identification of cumuliform cloud types.

A decision matrix approach to cloud classification using

elliptical boundaries was formulated for a 2—group cloud-type

model as follows: Store in the computer memory a 20x20 de—

cision matrix D where the value of the decision matrix at

D(r ,t) [where r is the rth reflectance interval (with each of

20 intervals representing a 5% increment in reflectance) and

t is the tth temperature interval (with each of 20 intervals

representing a 5% increment in temperature)] can assume any of

the values  0 , 1, 2, 3 which stand for the four possible classi-

fications

0 — no decision

1 — cloud type 1

2 - cloud type 2

3 — ambirac us between cloud ty pes 1 an d 2

The va lue  assi gned to element D ( r ,t) of matrix D depends on

whether  or not

[R-~~.12 rT -T .1 2
J + I i i

L
0

~~~~~~~ i~~~.l 
[o(~~~)J

where N2 is a range factor (similar to the factor K above),

R 5 r
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T = 5t + 200 0

~ 
c (~~~) ,  

~~~~
, o (~~~) represent cloud-type signatures

similar to those in Table 2 above .

If the above inequality is satisfied for both group 1 (i 1) and

group 2 (i=2), then the value of D(r ,t) is 3 which means that

the classification is ambiguous . Once the decision matrix is

stored in the computer , the classification of any data point

is achieved by computing r and t from the reflectance R and

temperature T and then consulting the entry D(r ,t) in the de—

cision matrix for the corresponding classification . The authors

:1 suggest the decision matrix approach for future configurations

for cloud-type classification .

Shenk and Holub [72] proposed a inultispectral cloud-type

identific~ tion method based on a cloud-type decision matrix

for the four spectral regions of 0.2—4.0 pm , 6.4—6.9 pm , 10—

11 pm , and 20-23 pm. Decision categories were

( 1)  cirrus clouds
( 2 )  cirrus with lower clouds

(3) cumulonimbus  and/or cirrostratus
(4) curnulonimbus

(5) middle clouds

(6) midd-le clouds with cirrus above

(7) stratus or stratocumulus

( 8 )  cumulus
(9 )  clea r

(10) no decision

A data point from Nimbus 3 satel l i te  imagery was c lass i f ied in-

to one of the categories 1-9 if measurements in all four spec—

tral channel fell between the lower and upper threshold for that
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particular cloud type . Otherwise , the data point fell into the

rio deci sion category. The authors recommended examining adjacent

cloud decisions to obtain information on cloud conditions at

“no decision ” points .

Threshold values were calculated from a radiative trans-

fer model which accepted as inputs average temperature and

moisture sounds for the given test area during the study period ,

a climatological ozone profile , and cloud tops at different

heights . It was assumed that low-cloud tops were at 750 mb ,

middle cloud tops at 450 mb , cirrus-cloud tops above 300 nib,

and cumulonimbus -cloud tops below 225 nib .

From a total of 611 cloud-type decisions over a 30-mile

swath covered by aircraft photographs , 85 decisions were mis—

classified . Two—thirds of the misciassifications represented

a confusion between groups 1 and 2, which probably could have

been avoided by different threshold choices for the visual

channel. The remainder of the misciassifications except for

two points were the result of labelling scattered low clouds

or clear conditions as cirrus. Some of the misclassification

errors were attributed to earth location errors iti the

satellite data , spatial resolutions , and time difference be—

tween aircraft and satellite observations . Modifications in

cloud-type categories and cloud -type thresholds were later

adopted (Shenk et al. t 7€~) wh ich significantly imp roved

classification accuracy.

Coincident infrared and visual data from NOAA -l satellite

were used by Booth [73] to test the discriminatory ability of
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Bayesian and m axim um -likelihood classifiers to separate 2100

cloud observations into a 6-group tropical cloud-type model

consisting of

(1) clear skies

(2) cumulus

(3)  stratocumulus

(4) cumulonirnbus

(5) cirrus

( 6 )  cirrus with lower clouds

and into a 5-group tropical cloud-type model obtained from the

6-group model by combining cumulus and stratocumulus into one

group. A comparative study of the effect on each of the

classifiers of selecting feature vectors from

(1) single—channel visual (.5— .7 pm) data

(2) single-channel infrared (10.5—12.5 pm) data

(3) dual—channel visual and infrared data

revealed that accuracy using sing le-channel infrared data

approached that obtained by dual—channel classification.

A combination of features representing 32 spatial distri-

bution measurements and 32 spatial frequency measurements were

calcula ted for each 32x32 observation matrix (approximately

54x96 nrni.) of coincident visual and infrared data. The

spatial distribution measurements selected for both IR and

visual data were mean , standar~d deviation , coefficient of

variation , skewness , kurtosis , range , mea n-median , primary

mode / secondary niode , average gradient , maximum quadrant co—

efficient of variation-minimum quadrant coefficient of varia-
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tion , and cumulative frequency values at 1%, 16%, 50%, 84%,

and 99~ levels. The power spectrum measurements selected for

both 13?. and visual data were values at wave numbers 1—il and

li.nc :i r combinations of various wave numbc-rs from 1—li. The

spatial distribution measurements have typically been used to

desc r ibe size , sha pe , and texture of cloud images. The power

spictrua mc-asur erscn ts  denote  the amount of var iance in an

observation du~ to clouds of various sizes. For example , given

a grid size of 54x96 nmi., wave number 1 corresponds to a cloud

size of 27x48 nmi.

Both the Bayesian and maximum-likelihood classifiers were

des igned  on f e a t u r e  vectors obtained f rom 1050 observation ma-

trices (half of the sample set) and were tested on both the

design set (d ep e n d e n t  d a t a)  and the remaining half of the s am-

ple ect (inde~ endont c i a t o )  not used for  desi gn .  The con-

di tional  ur oL ab il it i e s  p(i~5~) where p (ijTh is the posteriori

pr o b e L - i li t e  that an observation belongs to group i given

ob::-eevation vector ~ we r e ca lcu lat ed under  the assumDt ions

t hat  the feature vectors were no rma l ly  d i s t r i b u t e d  and that

the  covar i a ncc  m a t r i x  of each class  cou]d be approx imated  by

the pooled w i th i n — g r o u p s  d i spers ion  m a t r i x  where

— 

(F 1— l )  
~~ 

(F 2
— l )  

~~~~~ ~~ (F’~~— l ) ~~~
p -- 

N-k

where  is the  c ova r ian c e  m a t r i x  for  g roup  i,  F1 is the group

fruc~u’-ncy fc- r group i , N is the total number of observations ,

and  }: is t he  t o t a l  nu- -bc- r of groupo .  A p r io r i  probabi l i t ies

P(i) for the J~-evesian c~ asni~~ic’r were estimated from group-
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relative frequencies obtained from the entire sample set (in-

dependent and dependent data) . For the maximum-likelihood

classifier all calculations were performed as for the Bayesian

clas-;ifier with the exception that equal a priori probabilities

were used. The decision rule was to classify and observation

into group i if

P(iIX) > P(j~ X) for all j � i

where

P(XIi ) • P ( i)
k

~ P (2ii)-P (i)1=1

and

P(Xli) 
(2~~)1V2 ~ 

cxp [-
2
~
p 2

with

~~~ 
defined as the determinant of the pooled dispersion

matr ix

k d e f i n e d  as th e number  of classification groups

N. define d as the n-can vector for the ith classifica—
1

t~ on group

n defined as the n umber of f e a tu r e s  in f e a t u r e  vector

A

With the threshold level for screening set at the 1%

-
~ significance level , thirty-two features- (sixteen from each

channel) for dual—channel data , sixteen for single-channel

IR data , and seventeen for sing le-channel visual data entered

into the  discriminant function s g(X) . (where P(Xji) = exp [g(N ) 1))

- - 65
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calculated for the maximum-likelihood and Bayes classifiers

using the stepwire multiple—discriminant analysis program

(EMh07~-:) from the UCLA biomedical package. The feature which

was the host sinqie discriminator for dual—channel data was

the 1k value at the 1% c umu l a t iv e - f re q u en c u  level (at the

cold c-rd of t he  c umu l a t i v e - f r e q u e n c y  cu rve)  wh ich  r epresen t s

(for obscrvaticns containing clouds) the t empera tu re  of cloud

tops . For opacue clouds the th i r ty - two  f e a t u r e s  chosen tend
- 

-

~ to measure  va rious  c h a r a c t e r i s t i c s  of cloud tops ; however , for

s em i — t r a n sp ar e nt  clouds such as c i r r i f or m  the  effects of

u n d e r l y ing  v i sual  and i n f r a r e d  r a d i a t i o n  c o n t am i n a t e  the

m e a s u re m en t  of c loud- top  c h a r a c t e r i s t i cs .  The min imum mean

t emp e r a t u r e  r an g er  were  found  lfl s t r a t o c u m u l u s  samp les. The

xir um r : c an - te mp cr at u r e  r a n g e s  were f o u n d  in cumulonimbus  and

cirres observations with  the coldest mean tomnerature found in

cumuloniobus  obse rva t ions .  The mean t empera tu re  for  c i r rus

o bs er vat ion s  was  r e l a t ive ly  hi gh as a consequence  of r ad ia t ion

t r a ns mi t t e d  f r o m  below the  c loud  t ou r .  The m a x i m u m  mean te rn—

p er a t u r e  or a d i e n t  war  foun d  in c i r ru s  obse rva t i ons .  The

featur .,-n~ oh war thc seconu best O i r o r i m~~n at e r  fo r  d u a l —

c : ~c~ data war t he  visual value at the 99~ cum u la t ive  fre—

qu~~n~ 1~~v ’l  ,-:hich roprc-oento high albedo. keen relative

br~~~- .tncss was a n~~:-:imum for cumulonim~ us observat ions , a

~ in imu: s  fo r  c l ear  ob s e r v a t i o ns , rel at ively low f or cumu lu s

• obsc~ vations as a result of the  nonhom o g ene ou s  n a t u r e  of

cumuli~ orm c]cude , aad ccrinidc- r abl y hi~ her ~c~r stra tocumulus

observations. kanqa in i ; - ~- n  cloud l-riqht :a-ss wa s  maximum for
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curnulonirnbus and minimum for observations containing only

cirriform clouds. The largest mean brightness gradients were

foi~nd in curnulon ½ibus and stratocumulus observations.

Neasurernents of power -spectrum features revealed that the

first five wave numbers accounted for 79~ of the total

va r i ance  in cumuliform observations and 89% of the total

variance in cumuionimbus observations.

D i f f er en ce in over a~ l pe r fo rmance be tween the m axi mum-

l ik~ l ih~ od c lass i f i e r  and the Bayes c l a s s i f i e r  did not va ry

by more t h an  3~ no ma t t e r  whe the r  d e p en d e n t  or i ndependen t

data was be ing considered or whether  s i n g l e — c h a n n e l  IF , single—

channel visual , or dual—channel data was beinc considered or

whether a 5-croup or 6-group cloud-type model was considered .

For dual-channel Bayes classification for the 6—group model

the overall hit percentage was 76~ for the dependent (design)

data cud 63~. for the independent data; for single—channel IR

Bayes c l a s s if icat i o n  for  the 6—group model the overall hit

perce:itaec was 60~ f or dependent  da ta  and 57~ for  independent

data; for sing le—channel visual Bayes classification for the

6—grou p  model the overal l  hit percentage was 54% for dependent

data and 43% for independent data. In general , classification

results were better using the Bayes classifier on groups with

high -a priori probabilities whereas the overall hit percentage

for  groups wi th  low a pr iori  p robab i l i t i e s  was bet ter  for  the

lTa:•:imum-likelj} ood classifier than for the Bayes classifier.

The major misclassifications occurred in distinguishing

cunulc’nivbus f r o m  cirrus w i t h  lower clouds , cirrus from curnu—
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— lonimbus , cirrus with lower clouds from cirrus , and cumulus

from clear skier. Relatively few curnulonirnhus , cirrus , and

cirrus with lower clouds were misclassified as clear or into

one of the low-c loud  c;r oups.  The pa t t e rn  of e r ro r s  ob ta ined

mi jht he e:-:pc - c: ted as a r esu l t  of the proced u re f or man u al

c l as s i f i c a t ion  of clo ud types by the t ra ined meteorologists.

If an observation contained cumulonirabus clouds and cirriform

clouds , it was labelled as cumulonimbus regardless of cloud

amo unt  of each of the Lwo types.  Also when  cumulonimbus and

c u t u l u s  d e a l s  o c c u r r e d  in the  same obse rva t ion , t was

labelled as c um u lo n io b us , and when an observat ion conta ined a

small amount  of cumulus  cloud , it was labelled as cumulus

rather than d eer sk ies .

The ove ral l  h i t  percentages for  the Bayes classifier

app l i e d  to features ex t rac ted  f rom sing l e — c h a n n e l , IR da t a ,

sinale-che nnel visual data , and dual—ch annel data are given

in Table 2.3 below .

Six- (~roup kodel Five-Group Model

In d e p e n d e n t

L 
Depenae: t Data lndepenclcent Data Depandcnt Data Data

V isu a l  5 4 %  43% 55% 4 4 %

1k 60% 57% 69% 63%

Visual/In 76% 63% 81% 69%

Table 2.3: Overall flit Percentages of Bayes Classifier obtained by
beoth [73)
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Thus it can be seen that features from the single—channel Ih

data led to overall better classification results than could

be obtained using features only from single—channel visual

data . However clear skies can best be identified using

single—channel visual da ta .  Cumulus cicuds were best identi-

fied by single-channel IR data . For accurate identification

of cirrus clouds dual-channel data performed best.

Recommendat ions  made by Booth for  f u t u r e  research in

cloud c l a s s i f i cat i o n  techniques included:

( 1) i solat ion of cloud elements in an observat ion by use

of s e a — s u r f a c e  t empe ra tu r e  measurements with sub-

sequent calculation of features only on regions of

an observation which contain cloud elements rather

than on the entire observation

(2) addition of a “no—decision ” class .Ln which those

observations whose a posteriori probability was not

greater than a given threshold could be placed

(3) additional training samples for the groups of strato—

cumulus  and cirrus w i t h  lower clouds

(4) investigation of non—parametric methods of discrimi-

nant analysis .
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3 . 2 .  tired Soq’ ia n~ at  sri

Scene so rn ’ ,~~at ion refers e ither to the part ia l  or co :iplete deco-i posi-

tion of image ~a t~ into sp ec i f i c  parts • The r irapl est exo n - a le  of sc- ’u~- r~~a t O - n

of roteoroio q~cal satellite dat a  is the sepa rat ion of cloud from no ClO Ud

po in ts . Pa r t i  t ioni nq ima qc data into cloud—type rcq ions is another exa mple

of sc -orcn tat ion . Pa rt ia l  seqmentati on of an image may result in the ext r a c—

t ins of cloud objects or pa t terns such as thunderstorm cel ls , low —level

cu: -ulus cloud l i ne feeder ha nds , or arc —sha ped mesohi gli bo end ari es.

Basic ses--~cnto tion techniques for decom posi t ion or ex t rac t ion  of ohjects

include thresho lding loca l properties , edge detection , template matching ,

raster trackinq , and region growing . Segmentation of meteorological sate l-

li te data , either for cloud —type or cloud—pattern extract ion or for observa-

tion of t hande rrto ra structure , has , for the most part , been the result  of

application of thresholdin g or edge detection techni ques . Matching tech-

niqees have been used to t rac h the movement of cloud patterns.  Raster track -

• ing and its variations (such as omnidirect ion a l t racking, e tc . )  are employed

i n  a l g o r i t h m s  f~ r l ine and/or curve detection. Region grow ing techni ques

sta rt w i t h  i n i t i a l  p a r t i t i o n s  of an ima ge i nto ho coqeneo us re gions (for ex-

ample , r ca - i c r - s  of constant gray level ) and then merne or split reg i ons on t h e

bas i s ci so re c r i te r ion  for the ‘ goodness ’ of a par t i t ion.  Me rging of per-

tit ions r y cont inue until the gray level  v a r iance exceed s a speci f ic  thres-

hold or ray be has ed on ruse compl icated se mantic cni te ria (see Ya k imo a- rky

and Feld man [ic~73 ] ) .

The select ion of appropriate cloud pattern thresholds is one of the most

important areas of inves t ig at ion for ext r act ion of se vere storm fea tures .

Par~- ect ~ rs defi ni n’j the verti ca l qrowth rate of a cell , s ne rd—of —ce l l  m u v c -—

)rent , presence of ru-r -q i nq ccl is , and  presence of spi i tti ng ce l l s  dc peed cr 1 t i —
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c a l l y on ai -pcc -n ate t c-ee c atur e cont ouring of 1 m u t e d — s c a n  infrared data -

A cco rdir’~ te A d l e r  l~ /’-~, 
‘
~~ H area expa n sion inside particular isotherms is

a more as c - u  s r  te a nd nose Sr  f lS it vs pa r~e-e-ter [of I renders tonu growth] i n all

but t h e  v e r Y  s ; r , l y  s f a r ~~s ” t ha n the rdrui i uueu hla c t i t o—1 .’ tc r perature . Adler

de :u ns t r a t yd  t~ r~d s:-e l 1 a rea s c- f  co idc r  tompe r~ita cs w i thin the anvi l  often

e x h i b i  tr :! f luc lu - ~o ir - asso ciated ai th co r~,’ec t ive  ac t i v i t y  that were not ob-

serv e d in the e x p - rn s ~ on o~ t~ cirrus ar v il

Autom a t ic  s c l e c t i e n  or nra~’- ln - el t hresholds is usual ly a pr- reached i - ’

ass uni  j t hat  c hj e c t ;  or re ~t s-cm ; in an imag e can be character i  7ed by modes

of cor e - . 1 d Htr i b u a - H e ,  in e r - ny - leve l  histo q ram s . For the mode method , the

threshold is ssl y s tr d at the bott o m of a val ley het -: een two peaks . If the

vai l  cy is broad and r-he nc I::; are of unepue l s ize , a Lapl ac ian orera tor can

be ar-H i ed i-a  he ‘ - c turn to dot er - i  a ’  th~ gray- i eve ] value of poi nts that lie

on or n’c r  ot j ns t  “r -d~~m . - a t o n e  t i c  threshold sd ect i o n of cloud pictures

(y r  ip I o d ’  t us au q -
~~- - r e ’s:  rdt rearc-ss ion o rocedur e w as i nves t i qated by

• Yen [l57- :~ . The c-c Ho re a s ; u e r - d  that the gray — level  d istr ibut ion of the pi C—

tur e ‘ - ‘ u -  a Sm: H ne- - n - i s . The s uccess of the method was strongly dependent

on 1 5  na Hr ol co 1 denr - i  ty  funct.i ens ( t o  or three ) postu l ated.  Cbject/

!- c  I a r - u r r d  di r - c - h :- ldr  -‘err s c i e c t e d  at the intersect ions of the f i rst  and se-

cor d ‘ r u :  1 ~~~~~~ i t  V ‘lc t

1dm’ d t  cc ’ iou see r - : t - r s have also been app] ied to meteorological  s a t e ] —

i i  te d at a to e x t r a c t .  c lcuck freer backnro und . Smoothin g or averaging the imaci e

prior to ep~’iica tic ;r - of ed-ee detect io n operators can so meti mes improve the

rssi ;l ts. The H- s t  a d in i t e l qradi ont operator , ~-~hi ch i s def i ned for an y

2 x 2 arr v of ru - ‘ - ~ leve l va lues as max ( iA - f l  , B-C ) ,  often performs

as we] 1 as r ar e  e : p e r c a i  vs or sn; - hi s ti rated edge techniques on s pec i f i c  cloud

ira q- s . [dee~ cc - i a ls o  t o  c le tec ted by hi qh-p a ss spa t i a l  frequency fi 1 tori rig.
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I

T h e  output of edge de tec t ion  operators can he used in co njunct ion wi th border

trackin g alqo r ith r:  to outl inc an objec t or the output can be us ed to de ter-

m ine a q ray —l ev : r l  t l r r ’ s h o l d  ( i sH hr rr’u ) for c o n t c r u u r i r r q  en o b jec t .

S c qe s-r t a t l as  of i nfr , r r - ; ’ J dat a  in to cloud-- ty pe objects by ana lys is  of the

value of the av e -r are borde r ed ge st  u- e ng th of connect ed components at each

pass i He t . : era ~~i r r c-  va lue  i - ; d u cus s - ca l  in Pan H [i ~77t ] . T hree edge operators

m c c c  devel one -J . [dr-n o perators A - h  I ch di I fo r - er  i~ a ted be t  ;- ;ser step edges and

rar - I’ ed ges A-e ra ’  a -or e s e s : t i v e  t i s o l e t  on of un i f o ra - t r x tu r - d  cloud patterns

then ouee r ; to rS  rhi ch searched o n ly Ic - c in axi a - u ru r di I ferns c- bi’to c’en neighbors .

Res~r] f s of c -He -  t i c  t h resh o l d  se lec t i o n  b-as ~ d on this hr-b r idi  zat io n of thres—

ha l d ar -d ~dc ’e- d~ tes t  ion tec hr- i qucu cou ld proPs P ] ’  be l iar - roved by procedures

such ss us i ncr a mci ph t ed aver a ne [order-ed ge r 
~ rang td fea t ure  w ith less weight

at border :-a ints  a-i [ii inLay edqec - .

Tec hr i c ’ a - uos  for au t e : - a t i c  sd o r - t ies  of to : ‘c- i - at  i s  contours for analys is

of thu nde rs tma - s t - u :  tm-c riced to be dev e l op cd .  These t ec hniques could be

used to pre- ~P;ce er -rhe nc e d infra red lacer - cry  ~r d  to ex t r :c t  features w h ich re-

late tr- s evere  tbund~ rstorm a c t i v i t y . The se lec t ion  of sop -ro pri ate tempera -

ture contours could he based on anal ys is  of f ea tu re s ot Is - c  than border—ed ge

s t r cr iqt 1c - f e e t u r c e  such as sta ndard c!e v i a ti ci i i  of t e ree ratu r e  (w i thi n the con—

t ea r e d  a r e - ~s ) . u r c i f ’ r - : : i  H t c - t u r e .  a i ean -v i s~ bie bnh: I i t rs ’ ss , etc ., shoul d

also be examined.

Strea k s , c u rve s , a nd I i nca - can be ct ” t -a c d  Nv cxc ii i  ni rig local neighbor-

hoods (po ints or adj r r:nnt- nonover l epp iu r -  a - ; e r s -ccs  of points ) for l i ne—l i ke  or

s t reak- l ike  pa t t e r r c s . Results of s t  ree k d r t ’ - c t  ion operat ions can of ten be

siqn i fic ant l y improv -d by repeating t h e  oper t ion m ore t h e m e  once. A descrip-

t ion of l inear and non linear operators for streak and line detect ion can be

f- m ;nd in Pc-~ c - n °r l d  and Kak 1J P76 1. Sir ri i lar o~’c ’ ratc ’ rs can he desi gned to de —
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n
tect intersections or crossin gs of cl oud patter ns. A comparative study of

curve detection opera tors , l ine detection operators , and operators for det ec-

tion of branching or crossings of curves needs to be conducted in order to

detennine the most effective pattern recognition techniques for identifica-

P tion of mesohigh boundary interactions and low—level cuniulus cloud—line feeder

bands .

3 . 3 .  Cloud Geomet ry

Measu res for describin g geometr i cal p ro perties or rela tionsh ip s of clou d

cel ls fe m-ci an integral part of pattern recognition algor ithms for detection

— of severe storm features such as mer ging and for splitting cells , comma-sha ped

patterns , oval-sha ped leading edges of mesohighs , an d vert i cal g rowt h ra te

of cells. Dist ance measures , measures  of elon gat i on , c u r v a t u r e  measu res an d

area measures cast be specified .

The concept of merging and/or splitting cells in-pl ies that a distance

measu re between two cells exist. The distance between two cells can be a

fu nc tion , fo r exam p l e , of the d i stance between the cen troi ds of the cel ls ,

the min imum distance between edge points , or the d i s tance  between the m i ni-

mu :r tempera tures of the cells. If merg i n g of two ce l l s  i s de f ined  in  terms

of a zero di s tance be twe en o n e or more edge po i nts of the cel ls , then t he

r e c o g n i t i o n  of merg ing and/or sp l i t t ing cel ls would he dependent on the selec-

tion of an appropriate isother urm to contour the cells.

Techniques for locat ion of commna -sh apeJ patterns (such as thinning , t h i c k

curve following , etc .) could be developed or , a l ternatively, measures could

be defined to detect comma-like shapes. A possible definition of a comma

pattern mi ght involve location of the medial axis of the pattern and examina-

tion of ratios of the widths to the length of the pattern.
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Oval-sha ped boun dar i es of mesohi qhu could re dc - f ined  in terms of arcs

with expected curvature values greater than a given threshold. The curv a-

ture of a point on an arc is given by tIre difference between the left and

ri qh t slopes at the point. For an arc consistin g cf points PO~°l 
,. . .

the left arid ri ght k—slopes at the point ~j are the directions from Pi to

P1 —k dod f rom Pj to P i + k ’  resnect ive l y .

The area of a di gita l object i s defi ne d as the nu m be r of po in t s  i n the

object. In order to calculate che vertical qrci- th rate of cells in terms of

a c loud ex pans ion  p arame ter , appropriate isothera;s for cell definition must

be selected th roug hout the time period of observation. The selection of

the warmest temperature that is unara bi guously part of the entity is discussed

in Adler [ 1976].

3 .4 .  C l o u d _Tr ac k in o

The extrapolation of time-de r-endert features is a fundamental require-

ment f o r  predi ct ion of severe weather.  Algori  thes f cc autoniati c selec ti on

and tracking of cloud objects have been developed primarily for w ind velocity

estimation. These algorithms are reviewed in Sect ions 3. 4 .1 and 3 .4 .2 .  Auto-

mated algorith m s for tracking thunderstor m cells end other similar time-

varying features remain to be developed . The time—varying nature of these fea—

turcs dist inguishes the prob lem of recogni t ion of severe storm features from

most current problems in pattern recogni tion and imaae processing .
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3.4 .1. A u t om a t i c_~ e1cct~~on Techn~~~ues f o r  C lo u d  T~~~~et s

Automatic r e a l  hod s fo r w i n d  ve loci t- y es ti .nc rt . i on  w h i c h  do

not  rel y U~~Ofl t h e  sh i l l  of a t r a i n e d  m e t e o r o l o g i s t  to select

ci ouci t i  rgeta to be tr acked  f rom f r am e  to frame tend to irnp le—

ment  a ’ r i r t i c u l a r  aspec t  of [lie m a n u a l  c l o u d - t a r g e t  se lect ion

procedure. Prior to m a n u a l  c;elcctjon of a particular indivi—

dual oLe--cot or feature to be traced , a me teor ologist ‘~‘ill

u s u a l ly  assess the synoptic situation and ment :ally note the

general cloud nat tern flow ovcr a large area. Automatic

c ro ss— c or r c l at ~~on n e e t h o d s  i n t e g rat e  c l o u d - p a t t e r n  mot ion  over

an area ( u s u a l l y  32 x 32 or 64x64 picture points) . The b i n a r y

inatchi ri cj t o c h n im u n  developed by Bristor [ 7 2 ]  emulated the

m a n u a l  p rocedure  of t r a c k i n g  cloud edges f rom f r a m e  to frame .

As a result of factors such as evamorat ion , not all edges are

conserved from Ir eis to fr:inrc. In practice many meteorologists

would d ense to f o l l o w  brightness centers (not geometric cen—

tert;) of cloud manses from f r a m e  to frame rather than follow

edges. Tire c l u s t e r i n g  algorithm of Endlich et al. [711 in

which  cloud cl -r ic a were  represent-ed by brightness centers is an

analog to this procedure . Lo et al. [ 7 4 1  emphasized Fourier

t r a nsf o r m  f i l te r i n g  t echn iques fo r  se lec t ing  ind iv idua l  cloud

elem ents of the same app r o x i m ate size (p L e f e r a h ly  about 10 km)

as those normally used in ma nual select ion t echn i que s .

The o p e r a t i o nal  model of the National Environmental Satel-

lite G e r v ice  (NLSS) described by J3raclford et al~ [7 2 ]  , computes

cloud-displacement veccors from 64x64 cross-correlation ma—

ti-ices resulting f r o m  backward  c r o s s — c o r r e l a t i o n  of 3 2 x 3 2
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cloud-target areas from the second frame w i th 64 x 64 ~r eas from

the  first fraece. Each 32x32 array (and each 64x64 array) is

cer L ( -r e d  at a five-degree latitude—longitude intersection .

Tire choice of rpccliic sizer; for the two arrays was based on

the  e~:pcct- ed sneecl of the clouds. The use of a smaller array

f o r  th e  t ar g et  :~ra- c : than for the  search  a rea  was f o u n d  to im—

pi n- :-. - th e  a c c i r t  icy  of c r o s s — c o r r e lat io n  wind ve loc i ty  es t imates

fee the -se  e reac ;  in \ - ‘ i ch cicuos were moving in or out of the

bmorccla rjc; ; c-r in \-:hlch t-he boundary between two different cloud

nntterns can-a inside t i R  6 4 x 6 1  grid .

Bristor [72] developed a b i n a r y  m at c h i n g  t echn ique for

dc t e r e c i r c i n c j  c l oa d - d i  sp lacemen t  vec to r s  as ear l y  as 1967.  A

cloud ode-?  - - -as d c f in e c ~ by assi r n i n q  to it  a b r i g h t n e s s  isop l e th .

‘fl;c b r i g h t n e s s  r an g e  of the ed ge lay between the brighter

value- n ei thin a cloud and the darker values of the background

a r - ca .  The  i s o nl - a t h  Prey r ep re sen t  a c t u a l  c loud  edges  or it  may

r ep r e se n t  a b o un d a r  c-: lrere the cloud f i el d  becomes broken into

e l e me nt s  w h i c h  canno t  be resolved by the satellite sensor sys—

ten . Ea ch  b r i gh t n e s s  image  wa s  reduced to a b i nar y  image w i t h

c oud -nicjes th-p i ctecl by 1 s ari d d a r k e r  or hr~~g ht er  areas  by

h ’ s. I l l un t r a t i  ens of typ ical  b i nar y  images can be found  in

L- c r- - n t  - i i .  t7~ . The procedure for computing cloud displace—

- fre ei these binary images will be presented in the next

IC -n.

- al . [711 reduced cloud patterns in successive

- 0  o centers of bri ghtness whose disp lace—

frame agreed qualitativel y w i t h  cloud
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motion vectors calculated manuall y from time—lapse data of the

same sc - n c .  An ISODATA (Iterative Self—Organizing Data

An al ys is )  algori t1 r~ war ;  u sed to select  the cen te r s  of b r i g h t —

n e ss .  I.5Oh-Al’~\ is a c l us t er i n g  proced ure  f o r  o l ) t a i n i nq  m a x imu m

1 i h - 1 1  i hood es L i  ‘ r a t  - r ;  f o r  r e c a i r  v a l u e r s (cer -
~tcr s  ) w i t h  sp li ict i  m u

and r : e l r r i r i g  on t ion s  for- sp l i t  t in g  c l u st e r s  \- - lt h  too much w i t h ~

cluster v ar i a b i i J ty and m e r g i ng  c l u s t e r s  w i t h  too little

bet\-/ -ea—cjustc-r variability .

The p rog r ae r  fu r i c t  ions as foil ows . ~;ca1in cj  of the t hr e e

v a r iab le s  —— >: position , y pos i t ion , and b r - i  qh t n e ss  va lue

B is a oj u st ed  in accordance  \-;ith wei g h t i n g  f a c t o r s  appro-

p r i a t e  f o r  the  t h r e e — c h r - r e rn s i o n a l  d i s t ance  ~i~x + 
~
y ± LB }~

- 

, bet-eec i np u t  p o i n t s .  Sca les  chosen for  x and y v a l u e s  ra~ 

f r o m  1 to 120 in i n c rem e n ts  of 4 s ince t h e  original 120:-:l20

a r r ay  of  satellite m a e  points was defocused or averaged to

produce  a 30x3 0  a r r a y .  ‘Ihc sc ales chose n for the brinhtnosn

v a l u e  r an cic -d  f r o m  0 to 150 in ste-ps of 10 - - -i t h  all  p o i n t s  ~-:i th

br i gh t n e s s  va lues  less t han  60 d i sca rded  as back ground  e lements .

Then  t h e  mean  v a l u e  (~~, v , B) and the  root mean square  d ist a n c e

I.

2 2 2 2r =- K [ e  ( x )  + c ( y )  + ~ ( 1 3 ) ]

where

o2 (x), o 2 ( y ) ,  02 (13) variances of x , y, B,rcspectively,

K = spherc factor , chosen as 0 . 7  for th i s  stud y to yield

10—15 centers per grid area

were connoted from the values of all input points. The first
1_ . ¶
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brightness center ware specified as ti re - mean value CX , y, B) -

Data p oi n t ; we re  then  compared in a sequential fashion to each

brightness c en t e r  in order to determine ii t h e  distance from

the d ati point: to L i r e  b r i g l ; L r r r - o o  ct-flt (-r is  I n - o s  t h an  the  r a d i u s

r ( d e f i ne d  a i e e - e )  . If tire distance ire less t h a n  or equal to

t i r e  r a d i u s  r , t h e -  d a t a  ; ‘oin t  in  ass i qn - ~c1 to t h a t  c l u s t e r .

0th - ar . - , - i so , i f  t he  d i st a n c e  fro i ;r  every  br igh t n e ss  cen te r  is

g e - i  t e r  t h an  l i e  r a d i us  r , the  p o in t  in chosen as a new c e n t e r .

A f t e r  a l l  p o i n ts  h ave -  h -er- n processed , a new set of br i g h tness

- 

- 
c~~n t e r s  ( e u - - i n  v a l u e s  of clusters) is computed for each group.

At t h i s  stace, sp litting and lumping  ~ p t i o n s  can be

an lie i . I-~o r  sp l i t t i  g ,  the s tan d a r d  d e v i a t i o n s  w i t h i n  each

rou fcc r e r c 1 : of  U n  variables x , y , P are computed and the

are-el- neC~ i i i -~ t u e  l am e nt  v a l u e  fo r  any one d i m e n s i o n  is ten—

tat iver- 1~. ml i t  t h r o u c r h i t~5 lee- an v a l u e .  he :-.’ c ent e r s  a re  compu-

ted , a-cd if lr d ista n ce b e t w een  t h e  two new centers is greater

t h a n  seere pares;eter  
~c ’ the  two ne~-; c l u s t e r s  r ep lace  the

or i g ir a i  one .  1-~or l um n i  :rq , if two cluster centers are closer

t h a n  P , t he  t;-:o clusters are er~ rgccl into one. It was found

ex}~L -re :r e ; ;t a i  l v  t hat LI -a sp litting am id ru-ru ing o per a t i o n s  did

not i~nn r ov e  t. lie a c c u r a cy  of cloud m o t i o n  v e ct o r s .  The next

sta ge in t n e  ~ r :)A T ;~ r y e  cam was to d i sca rd  a l l  c e n ter s  t h a t

had less  t h a n  eN mem b e r; -; , wh :- re 0 N wa -s  set :  equal to three for

this a - re p l i c a t i o n .  The: ~1O’~’ION p r o gr a m  m a t ch e d  b r i g h t n e s s  con—

ters on t \-: r) ‘ i i  c t u re s  a-n d computed d ist a n ce s  be tween  m a t c h e d

p a i r s .

Lo cL a-i. [ 7 4 ]  a nf l l i e d  l o w — p a s s  f il t e r s , b a n d — p a s s  f i l t e r s,
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a-nd high-pass filters of various sizes to Fourier transforms

of succ ’r e n i v c  r ;a t  e l i  ito pictures in order to separate cloud

components of d i f  fu r e n t  sizes  and d isc a rd  c l o u d  elementr; w h i c h

ar c  too Lt r c je to move p e n s i v e ly  with the wind . In a l i mi t e d

r e g ion  cloud:-; 0 1 d i fferer;t si zn;; tend to occur  at  d i f fe r e n t

a i t i t ud ’- ; ;  and c o r r s - - r : l e n t i y r e -p r e s e n t  diff (-re-lit : motion vectors.

R e s u lt s  f r o m  studi er; on s im u l a te d  and r e a l—  cloud da ta  r evea led

Lir a~ the filtering t ec i r r ; i q ’u e  d i d  not significantl y improve

w i nd ‘V ’ -  locH ‘ .‘ ve-ct:o~ ;; for m u lt  i—layered , mixed -r:otion c loud

reg ic ’un . ‘i’he f i l t e r i n g  t e c l in iou c  f ai l e d  to  ca t e g o r iz e  c loud

re i n c  by w ave  l e n g t h .  Hi g h - f r eq u e n c y  c oe ge on e nt r ;  c o n t a i n e d  i n —

f o r n , r t : ion  n e t  onl’,’ about  small clouds but also about sharp

- 
- - -:lc-a n of l a -r ;~r c l o u d s  and s im i l a r ly lo’—~— f r e c i u e n c y  components

- ~ cent aS i i -  S i n f o r m a t i o n  n o t  o rb  a b O U t  larue cloud masses but

a- I so ~;hnu  t sei::l I c l ouds  w i t h  la:.- con t r a c t  a n d/ o r  bl ur r ed ed ge s .

Dif r ( ‘ ‘ T ( -: t  f~ i t  r - r s  or d i f f e r - -n t  arg ’roaci ;c-s to t h e  problem ‘-‘err -

-H far f u t u i - n’ i O : s( ’dr c r . In : r-t  c u lar  , th r - e sh o l d i ng

0 - r ; l : u r : i te  d i f f o r r - n t  0100 : :  t’. s , enh a n c e m e n t  p r o —

e~ - Su e n ; ;  : ; c ; c h r  an  k- - n — t one  ci  ( - a d / i  ) e c h g  r o u c u  inaucs to yield

s i n m r - ; s - r  c r - u ; ; ; ;— c o r  r u - i  at :  i o n  ; - 1 ; a ;  , amid r ;urlt inpe~~t ral c l o u d —

ciar;s if ication rn ( ’thodl s w e r e  en p e c t ed  to impro\ -c w ind  ve l o cit

estimates fee niulti—layered fields.
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3 . 4 . 2 .  A u t o m a t i c  T ee -u n cj u e : ;  f o r  T r a c k i ng  Cloud Targe ts

A u L o m a t ~~c techni ques for wind-velocity estimation such as

cross co r r e l a t i o n , U u c J  dean  norm , and phase d i f f e r e n c e  calcu-

l a te -  a c loud  d i  :;p l r c c m u e n t  v e ct o r  f r o m  t ir e  b r i g h t n es s  measure-

ment : ;  of a- q i v e m i  se c t o r .  For these t e c h n i q u e - :; , th e  e n t i r e  sec-

tor 15 ChOSen  a-re t i~ elC)Ud t a r g e t  to be t r acked  f r o m  f r a m e  to

f ram e . C r o s s — c o r r e l a t i o n  m e t h o d s  can he m od i f i e d  by se lect ion

of a su b s - - t :  of t he  given sector to be co r r e l a t ed  w i t h  a sector

f rom t h e  second image of tile- reamer- s i no as the given sector .

- 

- 

Ph ase d i f  f e r - e; -r cc and c r o s s — c o r r e l a t i o n  F o u r i e r  .methods can be

m o d i f ied  by f i lt e - r i n~ a F o u r ier  t r a n s f o r m  pr ior  to ca lcu la t ion

of a c l o u d - d i s p lac e m e n t  v e c t o r .  B i n a r y  m a t c h i n g  t echn iques

and iterative fitting te- c lir igues co;;Thute a cloud displacemen t

vector  from cloud features or cloud targe no d e r i ved  f rom the

b r ig h t o n - o s  meanurcannts of t h e  g Iv en  sector , i . e. , from edge

feature:-; an -c l b r i g h t n e s s  cent e r s , r e r e p - - ct i v c - eI y .

For cress—correlation techniques a- cloud di splacement

vector , re-presented by a d isp l a c e m e n t  index of p p i c tu re

e l e m e n t s  in t h e  x— d i r e c t i on  ( d i r e c t i o n  Of a s c e nd i n g  co lumns)

a-nd a d i  r e u i a c c m c n  L i nd ex  of q I icturc elements in the y direc-

tion (direction of ascending rows)  , is d e f i n e d  by the pair of

indices  (p ’ , q ’ )  fo r  which  the c o r r e l a t i o n  c o e f f i c i e n t

R ( p ’ , q ’ )  = m a x [ R ( p , q ) J  for  a-il  p ,  q where  —P p P and

—Q -. q Q. The va lues  of P and Q a re  det e r m i n e d  f rom con-

sideration of reasonable values for cloud d i s p l acemen t s .  If

V and ~ a-re the means respectively of a sector f(i ,j), for

i=l ,...,n . and j=1 ,...,n
1 

from the first image and a sector
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g(i ,j), for i=l ,...,n . and j=l ,...,n . from the second image ,

then the correlation coefficient R(p ,q) is defined as

J
~~
p,dl) = 

Cov (p ,q)

where

n.-q n. -p 
—

Cov(p,q) = 
1 ~~1f(i+p,j+q) F]Ig (i ,j) CJ

{ (n.—p) (n~ —q) J—i j=l 1 l

-
~~~ n . n . 1

1 ~ 1 2
°f n .*n. -i .~~~~ ~ [f(i ,j)-V) }2

1 j  j=l i=l

n. n. 1j  a —

~ 1 . . — 2 2
n .*n.—l .~~~~ ~ [g ( i , j ) — G )  }

- a j

Speed-of-cloud motion and angle-of-cloud motion is trivially

calculated as shown in the next  section from the displacement

• values (p’ ,q

Computation of a cross-correlation matrix of 25x25 lag

values (p,q) required approximately ten minutes on the IBM

System 360 Model 50 , according to Leesc et al. [71). The corn—

putation time can be greatly reduced by using fast Fourier

transform methods to compute the cross—covariance Cov (p,q).

Since the Fourier transform of the cross—cova riance of two

function s is the product of the. complex conjugate of the Fourier

• t r a n s f o r m  of one of the functions with the Fourier transform

of the other function , the inverse Fourier transform of this

product will then y ield the cross— covariance function. Time
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required to compute a 64x64 cross-correlation matrix on the

IBM 360/ 5 0 by the fast Fourier transform method s, search for

the maximum v a lu e , arid print out the results was only thirty

seconds as c o m n p r r e d  to ten minut e-s for the direct method .

Fast Fourier transforms compute sums of products of two

image matrices at different lag positions. These sums can be

used to ca lcu la t e  the dot p r o du c t  between two vectors  (cross

c o r r e l a t i o n )  or the di s t ance  between two vectors  (Eu c l i d e a n

n o r m ) .  A d v a n t a g e s  of the Euc l idean  norm t echn ique  ment ioned

by P h i l l ips and Smith [7 2 ]  are i ts high degree of-flexibility

and r ead i ly i n t e r p r e t a b l e  res~ilt s.

The GOES s i m u l a t io n  model for  wind ve loc i ty  es t ima t ion  at

the  h at i o na l  En v ir o n m e n t a l  Sa te l l i t e  Service  uses a f i r s t —

guess  di sp la c e-mon t  in combina t ion  w i th  d i r e c t  c o m p u t a t i o n  of

c r o s s - c o r r e lat i o n  c o e f f i c i e n t s  to obtain a c loud-d i sp lacement

vector . The computer  program , which  is s p e c i f i c a l ly adapted

to opera te  as e f f i c i e n t ly as fast Fourier transform methods on

the Cl:C-6600 , calculates an initial set of about 100 values of

c r o s s- c or r e l a t i o n  c o e f f i c i e n t s  in the neig hborhood of the

first—guess loca t ion  r a t h e r  than the en t i r e  set of 4 0 9 6  co-

efficients for a 64x64 matrix. If the displacement determined

from the initial set of 100 values matches the first—guess

field for  the c loud-mot ion  vector (which is derived from cloud-

h e i g h t  i n f o r m a t i o n  coup led with wind field profiles from the

National Meteorological Center), the cloud disp lacement is

accepted . The ini-tial matching threshold was 45 degrees in

direction and 5 meters per second in speed. if the displace-
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mont vector does not match the first—guess field , the entire

matrix of cross-correlation coefficients is computed .

Althoug h cross-correlation could be app lied to the binary -

edge pictures constructed by Bristor ’s (72] binary matching

techni que described in the previous section , processing time

requirements were about equal or slightly less for cloud dis-

placement calculation from match scores of the sector from the

f i r s t  image w i th  every possible (or reasonable) sector from

the second image . The origin of the cloud-displacement vector

was d e f i n e d  as the center of the first sector . The number of

positions containing l ’ s in both the sector from the first

image a-nd a sector from the second image formed the match

score . The terminus of the cloud-disp lacement vector was de-

fined as the center of the sector from the second image with

h i g h e s t  match  score. The method was critically dependc-nt

upon the equiva lence  of the b r igh tnes s  slice in the two sec-

tors. If it were possible to calibrate and normalize the data

for solar illumination , method s such as the binary matching

technique or ISODJ\TA technique which depend upon thresholds to

determine cloud edges or cloud masses could be used operation-

ally to compute cloud-displacement vectors , according to Leese

16 4 ]  . -

A program called MOTION , developed at Stanford Research

Institute and described by Endlich et al. [71), matched ISODATA

brightness centers in two successive frame s by iterating on a

fitting function F. F measured the distance

{ (A x -~ ç) 2 
+ (Ay -~~~~) 2 + (~~B) 2 ) 2 between the disp lacement

:t

~
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vector for any two centers taken from successive frames and

an inp dt displacement vector (~~~~, ~~~~, 0) with x disp lace—

mem~t y displacement ~~~~~~~~~~ .and brightness disp lacement of

zero. The initial values L
~
xk arid were specified as the

median displacement in the x direction and the median displace-

ment in the y direction respectively taken over all pairs of

centers with the first center in picture 1 a-nd the second

center in picture 2. The pair of centers  for  which F was

smal les t  was then considered to be a matched pair. The match-

ing procedure continued for centers not previously matched by

- 
‘

~ ; searching aga in  for  the smallest  value of F. The match ing

procedure terminated either when there were no more centers to

- - be matched  or when the  va lue  of F exceeded a p rede te rmined

threshold value chosen in this case to be representative of a

d e p a r t u r e  f rom , the input  d isp lacement  vector of approximate ly

— ll0m sec . For the next iteration and for every succeeding

i t e r a t i o n  of F values , the input  disp lacement values 
~
t X k and

• were chosen as average values of x displacements and y

displacements for matched pairs only. In the cases investi—

ga -t e d  by E :r d l i c h  et al . [71] , onl y th ree  i t e r a t ions  were neces—

sary for stable results in pair matching.

Approaches for selecting ISODATA brightness centers other

than applying ISODATA techniques to the two successive pictures

i ndependen t ly were  anal yzed . It was found  t ha t  movement of

-~~ groups of clouds across boundaries in some cases presented

problems when using the independent analysis approach for

successive frames. It was then  decided to usc the centers on
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t hr- Li tret picture a-s an initial guess for centers on the second

picture ; this worked well if the  g e n e ra l  d i s p lac e m e n t  was not

too la r r ;~ in comparison wi th the  ave rauc :  di  s t ance  between

L r i q h t n c - s o  cent - r o  . i i i  •r p p r o a ch  f i na l l y  u d o ; ,t e d  used an

i n i t ia l  c r ;t i r c r t e c- fT t h e  g en er a l  d i s p l a c em e n t  to r e p o s i t i o n  the

br i g l i t :r e o s  c en t e r s  f r o m p icture 1 as initial n u e r e s  c e n t e r s  f o r

p i c t u re  i .  The i n i t ia l  e s t i ma t e  of t h e  g en e ra l  d i s p lacement

wa - c ;  o let a  ned as f o l l o w s  . flpl itting c:ecnrands of I S O b ATi~ app l i e d

ine i epcn c ien  t ic  to t h e  :wo p i c tu r e s  t r a -n o  fe-rn -c-cl 1 cen ter  in to

2 , -ehe r  1 , t hen  8 c e n ter s  fo r  each p i c t u re - . ‘21 e- P O T ION p rog ram

m a t c h e d  as many  as poss ib l e  of the  ~ c ent e r s  f r o m  p i c t u r e  1

wi th  c e n ter s  f r o m  p i c t u r e  2 .  The ave rage  x and d i sp l a ce me n t s

of thes e m at c h e d  pa-irs d e t e r m in e -c l  the  in i t i a l  e s t i m a t e-  of the

qoca - r a l  di  s lac~:n - : - n t

The ISObAT~ -. b r i g h t n e s s  centers , ‘- ‘hi ch represent cloud

d a t a -  w i t h i n  an area h iv i n g  a c e r t a i n  r a d i u s , y ie lded averaged

m o t i o n  v e c t o rs  o - o r c - r - r i n ~cc- f o r  use- in sy n on t i c — s c al e  numer-

ical  f o r e c a s t in g . Di I fi c ult i e s  were- e n c o u n t e r - r e d  in app ly i n g

the ISOTA i’A technisue to large , dense, cl oud bands  such as the

intertropical c o n ver g e nc e  none in w h i c h  a variety of cloud

mot ions  ‘-~i t h  few d i s t i n c t  d i s c ern i b l e  f e at u r e s  could be seen.

The human  eye tenth ;  in these cases to fo l low army i n d i v i d u a l ,

small , recognizable features which  arc conserved from frame

to frame rather t h a n  average the pa t t e rn  i n to  10—15 b r igh t n e s s

fields. To imorove the  accu racy  of c l o u d - d isp lacement  vectors

for multi—layere d cloud regions , the addition of infrared

r n e e m s c i r c- r r - : - t s  to form a four—dimensional i npu t  vector  for  the  —
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ISODATA program wa s  s u g g e st e d .

Lo and Pa- r ik h  [7 3 ]  compared a Fourier cross—correlation

me t h e a  and a- Fc ’uri  c -n  phase  cii f fe r -n ce  me - I  hod for en t i mat  ion

of c l o n d  — d i ; 1 ’ i  a -ce-~m - n  L v c - c t o r s  on a v a r i e t y  of s imu l a  Led cloud

c i a -t a -  . S i mu l a  L c d  condi  i o ns  i n c l u d e d  cl I ~L ! lcp - o f b r i g l i L n e s s

c h an g e  of  ;~~ ze , c l o u d  r o t a t i o n , ed ge  c-f feeLs (cloud e l e m e n t s

moved out of t he  ed ge of one picture- but si ; ri  lar clouds did

not  ce-me - in  a t  th e  o t e r  -a - s i t e  ed ge of the  second p i c t u r e)  , mixed

motion , and r an d o m  - i n st r u m en t a l  n o i s e .

The p h a se  d i f f e r e n c e  method is ba-r eel on t h e  a s s u m p t i o n

a t hat  th e-  second p i c t u r e  q (x ,y )  r e p r e s e n t s  a l i n e a r  s h i f t  of p

units in the ;-: direction and q units in the  y d i r e c t i o n  from

the first n i c t ci - ti f ( :-: , y )  , i~.e. ,

y ( x , y )  : f ( x -p , v -e)  for  a l l  x ,y

The F o ur i er  t r a ns  orm 11 (u v) of the cross— ce-variance function

h (s ,y) of t w o  :-i-cturc :s fT ( ;-: , y )  and g (x ,y) is g iven by

II (u , v )  = C (u , v )  * F (u ,v)

where

G ( u , v ) *  comp lex c o n j u g a t e  of Fourier transform of the

second pi ct u r e q (x , y )

F ( u , v )  = 1~ourier transform of the first picture f(x ,y)

From the  d e f i n i t i o n  of the  Four ie r  t r a n s f o r m  and the assump—

— tion t h a t  g ( x , y )  = f(x—p,y-q), it can be seen that
-

~~~ G (u,v) 

~_ :ir~: 
g (x,y)

JJ f (x-p,y-q)e 2
~~ ~~~~

‘
~
‘
~dxd y
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2 7 [ + +~ )v1

If F ( u , v )  is expres sed in terms of its ampl itude and phase

angle as

-
‘ 

F ( u , v )  = I jF (u ,v) I e f ~~~~~

then

G * ( u , v )

- a  and

H ( u , v) G* (u ,v ) . F ( u , v)  = ~JF(u ,v)~ 
2
e2ri pu+

~~

The phas-s angle ~, (u ,v) for fl (u ,v) is given by

(‘J ,~~) = 2~ (pu+av )

Ti1 -:- sh i  f t s  p a- ia- i q can be d e-t e r m i n ed  f r om  succes si ve U and v

values rc~s~-cotiveiy from the relations

(u + l  , v)  — 

~‘h (u , v)  = 2np

(u , v+ 1) — 

~h (u ,v) = 2e0

h e p h ì ; e  d i f f e r e n c e  m ethod  a-nd the c r o s s — c o r r e l a t i o n

n~t t h m o d  i -c - re  a-p 3.1 e-d to s i m u l a t e d , m i x e d — m o t i o n  da ta  wh i c h  v i o—

l a-t e d  a-c- basic a s s ump t i o n  of l inea r  s h i f t

( i . e . ,  g C x , y )  / fT ( x -n , v -q )  fo r  a-ny p , q )  , n e i t h e r  the  phase

d i f fe r e  i c e  m et h o d  nor th e  cr o s s — c o r r e l a t io n  method could be

a-naly?o -d to obtain true estimates for both types of motion.

Filtering in the  f r e q u e n c y  domain  or thresholding in the spatial

domain were suggested as possible approaches  for  f u t u r e  r e sea rch .
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3.4 .3. A u t o m a t i c  C o m p u t a ti o n  of Wind V e l o c i t y

Time output from automatic techniques for tracking cloud

targets is a cl i sp l a c e m e - m i t  vec tor  (p , (3 ) . Speed I ~~i 
a-nd

direction 0 of clo u d ma t  ion are calculate-cl as follows :

i~ i

p~ . f ’ -0 = are-tan - - — -  - -

q ’ ~Ay

- - where

- — Ax , ‘ y = save-i i n q  iriterv a-l~- ; of the i n p u t  p i c t u r e  m a t r i x

in ti me ’ e-ast— - , - ,-er t  and n o r t h — s o u t h  d i r e c t i o ns ,

re-spec’ l i v e] ’ :

t ime ’ in t e ’ r ’~~41 1 - c - t , -,’e-e:i ti: - : L i e -  l a - c t u r e s

Ti e- au t om a t ni r o t h - i s  of t h e  N a - t i o n a l  i n v i r o n ~ - nt a i

Sa - t e l l i t  - ~ c - r v L ( - (- (nE~~;) for e n t i m i a m t i o n  of ] c - -:—ic -vel c l oud

m o t i o n  vec t ors  h a - \ - - . - 3 1 c o r~ ‘era- U d an a - u t  ( r c a  t: :1 c post—ed it or as

a ma- ci i i  r of the euc ii t v coi l rol  on i tc . The p o s t — e d i t o r  of

the- A C I (l- 1 h — > : L l  l o b - i  of  ::bSS r e je c t s  a io’~- ’--1evel c loud m o t i o n

voet en a - : i n c a - I  Ph i i l  ne i c l i e s  e i t h e r  of the f o l l o w i n g

c l i i - ; -~ Lo~ ecj ica l en  t e i l  i

( 1)  ito - mc~~ l~ L uele is  (a-- c - a - t e n  t h a n  40 kts

(2) it : ha-n a- w c - s L e r l v  c om n o n en t  and is locatCdl between

20°N a-nd 20°S.

The post—edi tor of the GOES simulation model of NESS considers

criteria such a-i ; d isp l a - e e l s - n t  f r o m  tie - ’ first- -guess field , hori—

zonta l  con s i s t ency  between n e igh b o r i n g  c lo u d - m o t i o n  vectors ,

88
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and gradient around the  p r i m a r y  maxima -  of the c ross -cor re la t ion

field for determination of the validity of low—level cloud-

m o t i o n  ‘ie ot or s .
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4. Conclusions and Reconrnendations

The purpose of this study was to assess the current status of pattern rec-

ognition techniques for severe storm features and to consider the potential

applicability of pattern recoqnit ion techniques to the autom atic identi fica-

tion and prediction of severe weather phenomena from satellite data . In the

previous sections of this report , we have reported in some detail on the na-

ture of severe storm features obtainable from visible and infrared satellite

data . We have also described the past develonments and current status of

automatic techn iques related to cloud classi fication and weather phenomena .

In t h i s  s e c t i o n , we s ummarize our conclusions and recc~~iend directions which

appea r f ruitful for further investigation.

4. 1. Conclusions

In the last decade automatic pattern recogn ition and imaqe processing tech-

niques for analysis of meteorolo gica l sate l l i te  data have been d irected pd-

man ly to~iard so lut~on of c loud c lass i f i ca t ion  and wind-veloci t y esti n~ t i o n

problems . The resolution and spectra l cha racter is t ics  of the meteorolo gical

sate l l i te data controlled the tyne of inforr ~~tion which could be automat ica l l y

extracted from the data and the nature of apnl ica hle pattern- recognit ion tech-

niques. For coarse resolution data , point -by-po in t  c lass i f i ca t ion  schemes were

developed. With the avai 1 ~hi 1 i ty of h ig h—resolut ion scanning radiometer data

decision—tree mode ls based on ext ract ion of cloud-type features were constructed.

Cri t ical  thresholds for either point -by-point c lass i f i ca t ion  schem es or

decision—tree models were determined either from design samples , from theoreti-

ca l considerations , or from convent ional meteorological sources . Cloud-shape

and texture features cou ld be determined from v is ib le  data only. Successful

c loud—type c lassi f icat ion schemes required inult ispectra l sate l l i te  data .

go
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Geosynchronous satellite data formed the orima ry in put to automatic wi nd -

velocity estimation programs . Cross-correlation techniques were applied to

two successive windows of either infrared or visible data to determine cloud—

displacement vectors . Techniques to extract wind estimates from displace-

ments confined to individual thermal slices are currently under investiga-

tion at NESc .

The automatic clou d—classification models and automatic wind—veloc i ty esti-

mation models have been extensively tested only over oceanic regions. The non—

homogeneity of the lan d surface as a background coupled with an increase in the

influence of local meteorological phenomenon which result in non—advective cloud

motions , complicates the problem of automatic—cloud type and wind-velocity analysis

over lan d areas. The success of these systems on a global scale has vet to be tested.

Automa tic severe weather identification and forecasting models place even

more str ingent requirements than automatic—cloud type or wind—velocity models

on the amou nt ~nd na ture of meteorol ogi cal satell i te data which must be con-

sidered by the system . In assessing the potent ial of pattern —recognition

techni ques to identify severe storm features from satell ite data , we observe d

that severe—sto rm features could generally be grouped into three major cate-

gori

1) wi nd— depc ’ n~ft’nt fea tures

2 ) enhanced— i n f r a  red fea tu res

3) visual featu res.

Specific severe weather features in each of the above categories are listed in

Table 2 . Wind—dependent fea tures and enhanced—infrared features (wi th the

poss ible exception of steepest tempera ture gradient and top heights ) require

time sequences of da ta to trac k the evolution of the feature.
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Relationships of speci f ic seve re -storm features to either wi nd data , en-

hanced infrared da ta , or v is ib le  data suggested by T a b l e  1 rep resent one and

only one approach to rdcognition and quanti tative measurement of severe-storm

featu res . Alternative relationships exist. Automatic techniques to identi fy

pendan t-sha ped cells , for exam p le , could be formulated based on cell—shape

measurements rather than on veer of wi nd with height. Although overshooting

• 
• 

tops were categor ize d under enhance d infrared features , the resolut i on of in-

frared S~S data is too coarse to delineate individual overshooting tops . Out-

lines of individual tops are best observed in higher resolution visible imagery

for a low—sun angle. Th~ major d isadvant age of using vis ible data to track
• overshooting tops is that a re lat ively expensive normalization procedure for

solar zen ith angle would be necessary ‘-
~ fore statistical relationships between

top brien t ess and severe-we~ t er r henc~ ena cculd be develo ned .

Onr gener al con clu sirn in ex~r~ini n n the current stctun of severe— storm iden—

t i f ic a t ~nn is that it is an area 0c indivi du al , su bjective experience which

ex is ts  in the for~ ef verba l dcscr~pt~ons of various fe atures.  As a result ,

there a re di’f cer ces of op ini on •~ :eq ~~ ‘nru i  oci~ S tc c o n c e r n i n g  the  n a t u r e

of the de ta ne ceyc~ rj  ~or i de n t i f i ca t i on  of pa r t icu l a r  severe weather fea-

tures end the role cf a ut oma t ic  r~cessin ’~ in fo recas t i ng  severe weather phe-

nomen a. Although most of the responses to our severe weathe r questionnai re

m ica tr~ a need for auto:ea t ic  proce ssing of hi gh resolution , time se quences

of v isi b le In infra red meteorological sate l l i te  data in an interact ive en-

viron cet , the ble nd of man—machine interaction envisioned wi th in these sys—

tc~e v a r ird .

On tee one Innd. it is said that autom atic procedures cannot hope to com-

pete w i th co” n t r r  I ; z d  ncthod ohe deal inn w i th local ienn~ cna over small
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regions . A meteorologist can ouick ly assess the relevance of ground-based

reports , te letype reports , r ada r , and sate llite features and bring to bear

his expert ise on the l imited area of concern . In this view , the role for au-

tomated t e c h n i ques is in dealing with more global situations where vast amount

of data are to be hand led in order to define the small percenta ge of areas on

which a human should concentrate.

• On the other hand , image processing of large amounts of satel l i te data on a

-~ sequential computer is not economicall y feasible at the present time. The

general procedure to handle large amounts of data is to part i t ion the data

into smaller reg ions (windows) and base decis ions on local operations per-

formed on each window . This procedure fails to give satisfactory results

when con textual information from nearby windows is necessary for a decis ion

or when given features lie in two different windows . As a consequence , many

meteorol ogis ts pr efer to use automatic techn iq ues to exhaustivel y exam i ne

small regi ons wh i ch they ha ve selected in order to detect and measure su b tle

di fferences an d cha nges wh i ch are not eas i ly measure d by the human visual

sys tern.

It would seem that a more careful study of the interaction between human

and machine processing of weather data will be facilitated by whatever attempts

are ma de i n  automating some of the severe storm features in Table 2 . As a

• f i rs t  ste p. descri ptions of severe weather features should be standardized

so as to allow auto matic extraction whenever feasible. For wind-dependent

fea tures in Table 2 , alqorithn ls to extract low-level and upper -level wind

vec tors  over o c ear i c  areas  and to determine divergence and vorticity (Thornasell

[1977]) are being investigated at NESS. Our extensive search of the litera-

ture and our quest ioning o~ individuals working on different aspects of me-
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teorological data processing revealed no exist ing algorithms for automatic

extraction of enhanced i nfrared and visible imagery of severe storm fedtures.

While ma ny pattern recognition algorithms and image processing e1go rithr~s

exist for the various l ow—level operations that would be involved in extrac-

tion of these featu res (see Section 3), a com parative study of the applica-

bility of relevant al gorithms does not exist. To deternine the best digo-

rithms relative to these features would require experimentation with real data.

- 
•
, 

As men tioned earlier , i n the pattern reconnition and image processing litera—

ture almost no attention has been paid to the extraction of features which

evol ve wi th time . This time variation of enhanced infrared severe storm fea-

ture s has not been attacked oreviously using patte i~ recognition techniques ,

and any denonstrat ion of feasibil i ty on these features would lend credence

to pattern recognition approaches for severe-storm pattern recognit ion. If

these features could be automaticall y observed and extracted , this would sub-

stantiall y a~d in rapid decision mak i ng concernin g severe storm act iv i ty and

testing corre lat ions between measurements from sate l l i te -der ived severe-storm

features an d from ground-based reports on severe weather phenomena . For

this reason , it is worthwhile to consider the development of automatic tech—

ni ques .
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4.2. Recomm enda ti ons

It is recommen ded that an attempt be made to quantify current verbal de-

scriptions of severe—storm features in order to minimize ambiguity of defini-

tion and to fac i l i ta te  (a) comua rative studies of the correlat ion of the

var ious featur es to severe —we a ther pheno mena and (b) the automatic ext ract ion

of those features which corre late ~iell with specif i c severe-weather phenomena .

Imp lement ation of this r. com:w-nda tion will require close and extended inter-

ac tion with meteorologists active in severe-storm identification and predic-

tion from satellite data .

The key to the automation of ma ny a the potentially useful severe—storm

featur es l ie s in being ab le to detect and recognize pa tterns wh i ch evolve i n

time . It is jmo or fant to es tab l ish  as early as poss ib le the feasib i l i ty

of autc: : iat ic a l l y recognizing such patterns. It appears that it may be pos-

sible to recognize some of th ese pattern s usin g limite d sca n i nfra red data .

In the event that it should prove feasible to automatically extract time—

vary ing patterns as recommended above , i t would be desi rable to conduct a

comp a rat ive stu dy of curve -detection operators and line— detection operators

for ident i f icat ion of mesohi ch—bounda ry interactions and low—level cumulus

clou d— l i ne feeder bands. In line with the above , it i s recommended that ini-

tia l ly work he doco on merg inc or spl i t t ing cel ls  in infrared data enhanced

• in a manner siini m r  to that currently hei no used for huma n recogni t ion. For

this invest i ga ti on , data which contains well -defined events of the type to he

recognized will be needed.

Al gori thms for wind-velocit estin ia ti on and calcL lati on of divergence and

vorticity fields over ocean areas are being develoned at NESS. There are cur-
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rently differences of opinion among meteorolo gists on the feasibility of using

automatic techn i ques to calcula te cloud displacements which represent the an-

bi cnt wind f low . The applicability of automatic algorithms to determine wind-

vecloc ity vectors from cloud displacements over land has not been determined .

Zr , the event tha t they are appl icable , these programs could be incorporated

into automatic methods to extract Wi nd-dependent severe -s torm features .

Decision trees (similar to that of Scofield ’s) which make use of a number of

features to determine specific severe—storm activity should be developed. In

develo pine these’ trees , pa rticular attention should be given to features whose

extraction is l ikely to be successfully automated. Interactive programs for

the des i gn of SUCh decision trees should also be considered .
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APPENDIX

Severe Storm Questionnaire

Qur : S’FIO NNAI R E

Please send re sponses to:

Profe ssor L avecn K ana l
Laborator y for P a t t e r n  A n a l y s i s
De pa rt mc-n t o~ C~ m ;~ut cr Science
U n i v e r s i t y  of M i r y  land
Co ileq e P a rk , M. ,rvIand 20742.

YOUR NA - IE :  ____________________________________________

ADDRESS & TEL . NO.  
___________- ____________________

1. What are the c~ ’~~joLies of severe weather? (Some examples
are listed below . Wha t additiona l cateq ories should be
listed?)

1. Severe windstorm
2. Heavy r~:instorm
3. Hailstorm
4. Tornado
5 .  

_________________

6. __________________

7. 
_________________

S . 
_______

9. 
—________________

2. Correspo’~Jino to the above categories , please list the im—
porta nt characteristics (features) of each of these categories
which you think may be obtainable from S~ S sa tellite data; e.g.,
spl i t t ing cells , pendant shaped cells , overshooting thunder—
storm top s , rig ht moving storms , low-level cumulus feeder

• b a ;~ds , mosoh igh boun da ry in te rac t ions , s teepest  temperature
gradient , speed of cell motion , ver t ica l rate of cell  growth ,

1n4



QUESTIOUO1~I RE
Page 2

2. (Continued )
pa ttern of upper level and lower level convergence and di-
vergcnce . If possibl e , please lis t the features for each
ca teg ory in the order of their  importance for c h a r a c t e r i z—
ing each catego ry.

3. Which of the above characteristics do you feel a~ e ame na ble
to computer extraction from visible and IR sateL ite data?
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QUESTI ONEAI RE
Pag e 3

4. For each of the charac teristics listed under queStion 3 , we
would l ike  to know your op inion as to whether or not that
character irtic can be extracted from a sing le IR image. If
not , are vU -ti ]e imagery and/or a sequence of visible and/
or 1k i i ~~~~ r equ ir ed ? If so , how many images and at what
intervals (10 you sug’jest?

• 5. Do v~v~ -:~ o~-: of alg orithms which exist or are under develop—
• mont for co~~ uter extraction of such features? If so, please

pro :ide references to the algorithm s and to the laboratories
- ‘ or persons who can be contacted conaernirig them .

-
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QUESTI ONNAIRE
Pag e 4

6. Are there algorithm s which you feel should be imp lemented
eithe r for preprocessing meteorolog ica l s~ tc11i te data or
for anal yzing specific sev ere storm ar eas? Do you f eel
that such are as will ha ve to be pin pointed by a meteorolo-
g ist using a man—machine in te rac t ive  syste m ?

7 . Do you have ~spccific suggestions on how computers can best
• • help in sevc~ c storm weather pattern recognition using sa—

• t e lli tc’  data?
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